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Abstract

The allocation of processes to processors has long been of interest to engineers. The

processor allocation problem considered here assigns multiple applications onto a comput-

ing system. With this algorithm researchers could more efficiently examine real-time sensor

data like that used by United States Air Force digital signal processing efforts, or real-time

aerosol hazard detection as examined by the Department of Homeland Security. Different

choices for the design of a load balancing algorithm are examined in both the problem and

algorithm domains. Evolutionary algorithms are used to find near-optimal solutions. These

algorithms incorporate multiobjective, coevolutionary, and parallel principles to create an

effective and efficient algorithm for real-world allocation problems.

Three evolutionary algorithms(EA) are developed. The primary algorithm generates

a solution to the processor allocation problem. This allocation EA is capable of evaluating

objectives in both an aggregate single objective and a Pareto multiobjective manner. The

other two EAs are designed for fine tuning returned allocation EA solutions.

One coevolutionary algorithm is used to optimize the parameters of the allocation

algorithm. This meta-EA is parallelized using a coarse-grain approach to improve perfor-

mance. Experiments are conducted that validate the improved effectiveness of the paral-

lelized algorithm. A Pareto multiobjective approach is used to optimize both effectiveness

and efficiency objectives.

The other coevolutionary algorithm generates difficult allocation problems for testing

the capabilities of the allocation EA. The effectiveness of both coevolutionary algorithms

for optimizing the allocation EA is examined quantitatively using standard statistical meth-

ods. Also, the allocation EAs objective tradeoffs are analyzed and compared.

Using statistical hypothesis testing, the algorithms are validated for effectiveness in

their respective problem domains. The allocation EA is shown to generate solutions that

effectively and efficiently allocate processes to processors. The capability of the meta-EA

to produce effective and efficient parameters for use by the allocation EA is validated, as

is the capacity of the competitive EA to generate difficult allocation problems.

xiii



Active Processor Scheduling Using Evolutionary Algorithms

I. Introduction

A distributed system offers the ability to run applications across several processors.

A given distributed system may have multiple processors working on a single program, or

it may have a variety of programs running simultaneously across the different processors.

The efficiency of a distributed system is based on its ability to balance the load across all

processors and communication links. Two notable examples of research organizations that

use multiprocessor systems are given in Appendix A. This research is not limited to an

Air Force role, it can be applied to any organization that uses multiprocessors for data

analysis. Thus even the Homeland Security efforts for real-time aerosol hazard detection

using real-time weather data could benefit from this work[63].

1.1 Problem Statement

The focus of this effort is the processor allocation problem. The high-level goal is

to design an effective allocation algorithm that efficiently maps processors to processes.

An effective allocation algorithm is one that assigns the processor/process resources in

a manner that optimizes the overall throughput of the system. The efficiency of the

algorithm is based on the speed at which it can find a near-optimal solution. The research

effort presented for this problem has the following sub-goals:

1. To understand the technology and algorithms associated with processor allocation

problems.

2. To develop an algorithm with appropriate software architecture that yields obtain

near-optimal solutions to processor allocation problems.

3. To examine the allocation algorithm with respect to other available algorithms.

4. To design an experimental test suite that assesses algorithm performance for solving

processor allocation problems.
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5. To develop algorithms that helps improve the performance (effectiveness and effi-

ciency) of the processor allocation algorithm.

For this problem we assume that a system is composed of multiple, perhaps het-

erogenous, processors working on different applications in parallel. For a system with N

processors, each of these applications requires between 1 and N processors. The nature

of these programs is unknown to the scheduler prior to execution. However, the load

balancing program must know how many processors the program requires and how many

processors are optimal.

The problem is to find an assignment of P processes to the N processors that ef-

fectively and efficiently uses the computing resources available. This problem has been

examined in a variety of research investigations using many algorithms [62] [68] [46] [30]

[13] [39] [38] [26] [65] [78] [18]. Each investigation generally takes a different approach

towards the allocation problem, creating a variety of algorithms for different allocation

problems. Here an allocation algorithm is designed for use on a wide range of hardware

and software systems, which allows its use in a variety of applications, such as those indi-

cated in Appendix A.

1.2 Approach

Because it is unknown whether the system consists of homogenous or heterogenous

processors, the algorithm incorporates a method of load balancing that takes into account

the relative processor differences. It also takes into account any differences in communica-

tion latencies between processors to ensure that programs with intra-processor communi-

cations are organized effectively.

Even mapping the processes to processors using simple domain decomposition is

an NP-complete problem[26]. This complexity motivates the use of a highly modified

version of the well known GENOCOP III Evolutionary Algorithm(EA)[50]. Evolutionary

algorithms apply the principles of genetic evolution to optimize solutions to problems and

have been found to be effective for NP-complete problems [73]. Also, the GENOCOP

III used here has shown itself to be effective in a variety of problem domains [12][50].
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Modifications to this algorithm include handling multiobjective problems (MOPs) and

coevolutionary problems, and incorporate parallelization for solution improvement.

1.3 Thesis Overview

The first step for this research effort is the problem definition. Chapter II provides a

description of the different options available when developing a load-balancing algorithm.

These options include examination of the allocation medium, objectives, preemption pol-

icy, arrival process, service demand knowledge and priority. This chapter provides a back-

ground overview for the problem that logical choices can be made on constraints to be

placed on the allocation system.

Using the problem domain as a foundation, Chapter III provides a discussion on a

few algorithms that have been successfully applied to load balancing problems. While a

comprehensive examination of every possible algorithm is beyond the scope of this work,

the application of six well known algorithms is addressed, mainly the Set Partitioning Prob-

lem Algorithm[52], Max-min/Min-min[39], Simulated Annealing[38], Orthogonal Recursive

Bisection[26], Eigenvector Recursive Bisection [26], and Evolutionary Algorithms[18]. The

algorithm domain of each of these algorithms is provided with their perspective approaches

for optimizing the load balancing problem.

Chapter IV provides a high level framework for the problem and algorithm selection.

The problem is depicted with respect to the choices given in Chapter II, and based on the

discussion in Chapter III the selection of EAs for use on this problem with the mapping

of the problem domain to the algorithm domain considered. This chapter also explains

the underlying concepts behind the two coevolutionary algorithms, with a focus on their

intended effects on the allocation algorithm.

Chapter V discusses implementation details. It explains the selection of the GENO-

COP III algorithm, and discusses the algorithm details and the modifications implemented.

The allocation algorithm, meta algorithm, and competitive coevolutionary algorithm are

each described with respect to the algorithmic properties of the candidate solution set, the
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next-state generator functions, selection function, feasibility operators, solution function,

and objective calculations.

Chapter VI describes the experiments and the metrics and statistical practices used

for examining the effectiveness of each algorithm. Specifically considered are the testing

approach for the competitive EA for development of difficult test problems, the meta-EA

for effective and efficient parameter generation, and the allocation EA with respect to using

local hill climbing.

The results of these experiments are given in Chapter VII. Specifically, these results

address the success of this research effort in improving algorithm performance by testing

for the following objectives:

1. Develop and validate a task allocation algorithm.

2. Develop and validate the ability of a competitive coevolutionary algorithm to gener-

ate task allocation problem test cases based on benchmark and real-world consider-

ations.

3. Develop and validate a hierarchical EA that generates effective and efficient param-

eters for an allocation EA.

4. Develop and validate the scalability of hierarchical EA generated parameters, in that

a robust set of parameters can be used for a range of problem sizes.

5. Develop and validate the effectiveness of a local-search heuristic for improving the

allocation EA.

This section also contains a discussion of the tradeoffs among the allocation EA objectives.

Chapter VIIIcompletes the discussion and presents conclusions and recommendations

for future work.
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II. Processor Allocation Problem Domain

In order to effectively select which type of balancing algorithm, it is necessary to first

examine the available problem domain choices. Table 2.1 depicts some of the choices that

should be considered when examining different processor scheduling approaches, and it

indicates a large variety of factors, each of which must be compared and contrasted[62].

Allocation Medium:
spatial vs. temporal

Objective:
min communication vs. min processing vs. min routing

aggregate objective vs. Pareto multiobjective

Flexibility:
non-preemptive scheduling vs. preemptive scheduling

Arrival Process:
batch of applications vs. Poisson arrival stream

Service Demand Knowledge:
none vs. probabilistic vs. deterministic

Priority:
equal priorities vs. distinct priorities

Table 2.1 Decision choices for an allocation algorithm. These choices represent a collec-
tion of tradeoffs available for processor allocation problems.

In general, load balancing consists of mapping Ntasks processes to Nproc processors.

The high level goal of processor allocation is to create the mapping in such a way so as to get

better performance and better utilization of the processors available than would have been

possible otherwise. This problem is an NP-complete optimization problem[26, 39], yet is

one of such practical application that numerous researchers have examined the effectiveness

of a variety of different heuristics for solving the problem [39], [62], [65], [38], [13],[30].

In order to ensure an effective load balancing system an examination of each of the

different options available for the problem must be performed. By careful selection of the

parameters of the problem domain the search space for this large combinatoric problem
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can be reduced. It is for this reason we must step through the choices as given by Table 2.1,

examining the different options that we must decide amongst for the final problem mapping.

This Chapter is primarily constructed based on the options given by Table 2.1. The

first section provides a discussion of High Performance Computing Systems. Following

this a discussion on Allocation Medium is give in Section 2.2. A symbolic formulation

for standard static allocation objectives is presented in Section 2.3. The flexibility, arrival

process, service demand knowledge, and priority are then given in Sections 2.4, 2.5, 2.6

and 2.7 respectively. This done, the symbolic problem domain is presented in Section 2.8.

The final section(Section 2.9) then covers the associated problem domain of parameter

selection, followed by a summary of the Chapter.

2.1 High Performance Computing Systems

Before we can understand the nuances involved with designing an allocation algo-

rithm, we must first understand on what type of system the problem exists. High perfor-

mance computing (HPC) systems consist of a grouping of processors that work collectively

for processing calculations in some order. The different implementations of distributed

systems are extremely varied. They can be composed of a collection of homogeneous pro-

cessors (multiprocessors) or a collection of distinct computers each with their own processor

(multicomputers)[71]. They can be designed such that each processor shares a single mem-

ory space or, as in a multicomputer system, each processor has its own individual memory

from which to work. These classifications are typically labelled based on their usage of

instructions and data streams.

The three most used classifications are MIMD, SIMD, and SISD. A SISD system

uses a single instruction, single data stream for execution. This classification represents

the standalone computers without regard to multiprocessing. A SIMD architecture is one

with a single instruction with multiple data streams. This type of architecture is depicted

in Figure 2.1. It has a single control unit executing across multiple processing units. A

MIMD (multiple instruction multiple data stream) is an extension of the SIMD whereby

instead of a single control unit, each data unit has its own controller, and can thus execute

multiple different algorithms simultaneously, this is depicted in Figure 2.2[71].
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Figure 2.1 SIMD architecture: Single Instruction Multiple Data Stream. All of the
processing units receive and execute the same instruction set.

Differences between processors and memory are not the only element of a distributed

system that can vary. The topology of the connections can be different as well, systems

can be connected in any variety of forms, from a ring, to a mesh, to a hypercube, etc,

connected over a variety of different bandwidths dependent on the hardware[71].

A multiprocessor system typically consists of a shared memory by which a number

of homogeneous processors communicate[71]. This shared memory has the advantage of

having a single address space for the programmer thus evading possible problems of memory

concurrencies[71]. Unfortunately, these systems are normally highly expensive.

A multicomputer system consists of a variety of normally heterogeneous systems that

each have their own memory yet communicate over some type of communication topology.

These systems allow for a limited supercomputing capability at a cost that is much more

reasonable than that of the multiprocessor systems[66].

When considering an HPC system, examination of the processing capability must

be examined with consideration of the connection topology, or backplane. The connec-

tion topology of an HPC directly affects the communication delay between the computer

systems[44]. This delay can be so substantial as to void any advantage the process had

intended by using a multiprocessing system. Thus it is the goal of allocation policies to

map processes to processors in such a manner as to maximize the processing capability

while minimizing the communication overhead[65].
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Figure 2.2 MIMD arcitecture: Multiple Instruction Multiple Data Stream. Each of the
processing units execute their own individual instruction sets.

Some notable organizations that could potentially utilize a processor allocation algo-

rithm are given in Appendix A. Most notably of these is the Signal and Image Processing

(SIP) effort. For this research investigation multiple processors are utilized for the different

signal analysis utilities. By being able to effectively and efficiently allocate these processes

onto the processors the researchers would be able to analyze potentially more data in less

time. Since each of these applications can use a large range of processors or processes the

algorithm developed must be capable of any handling different combinations between these

amounts. Typically HPC systems are designed with some factor of 2 amount of processors,

with small systems starting around 16 processors and larger systems with closer to 256 or

512 processors.

2.2 Allocation Medium

On a high-level, allocation problems can be divided into two basic groups, those

of time-sharing and those of space-sharing[13]. Time-sharing policies work by splitting

the system into time blocks whereby each process would get a certain amount of time to

process the tasks across all of the processors. Space-sharing creates virtual partitions of

the system and allocates each processor solely to a single process based on this partition.
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That process would then have total control of each of the processors in its partition. The

process however would be limited to only the processors within its partition.

An examination of the literature shows that a vast majority of the allocation studies

have been based on space-sharing approaches[13][68]. Time-sharing does have its advan-

tages, and thus should be examined, for as there is no free lunch for algorithms[84], their

can be no free lunch for every problem either. Thus no single solution can be used as the

most optimal choice for all problems.

Time-Sharing Approaches. Time-sharing approaches to processor allocation occurs

when the processing time is divided up such that each process has a set amount of time

to execute. Thus each process is given access to all of the processors they require, just in

discrete time increments. In general time-sharing approaches can be divided up into two

sub-groups: coordinated and uncoordinated[13].

Figure 2.3 Coordinated time-sharing processor allocation approach. Each process is
given a time slice on the system such that all processors are available to each
process only during its time slice.

A coordinated time-sharing approach to a distributed system occurs where each

process is given a time-slice. During that time slice the process has full access to all of the

resources of the distributed system. Once the time slice has completed, all of the resources

then transfer to another process. This type of approach works best on systems with a

small granularity and centralized memory[13]. The small granularity is important so that
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the processes can execute fully in their limited time slices. Centralized memory allows

for a minimization of the overhead associated when the process is preempted. Figure 2.3

illustrates this process, at each time slice the processes switch such that for each time slice

each process can use all of the processors on the system.

When this is run on a system with distributed memory the transfer and storage

of data has a tendency of overwhelming any advantage that otherwise would be possible

from the policy[13]. To start with, the initial program data needs to be resident on every

machine a priori to execution. Then, during runtime the state of each of the processes

must be transmitted to each of the processors so that they can each continue working on

the program[13]. This transfer at each time frame generally makes this type of approach

excessively expensive for standard HPC systems.

Figure 2.4 Uncoordinated time-sharing processor allocation approach. Each process is
allowed to use any processor at any time slice depending on the application
needs. Thus the process is allowed to roam across the network.

While the coordinated approach gives each process a single-time slice by which to

use every processor simultaneously, an uncoordinated time-sharing approach allows for the

processes to be executing during different time-slices. In this manner each of the processors

can work autonomously from the rest. Thus in this type of system one job can be running

at different times on different processors. The major disadvantage to this approach is

that the communication necessary to support each process being preempted at different
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time slices requires excessive overhead by both the backplane and the underlying system

hardware. An example of this type of of approach is given in Figure 2.4.

Space-Sharing Approaches. There are many approaches that have been researched

for load balancing a distributed architecture based on a spatial partitioning policy. These

approaches can be nominally grouped into three basic classes: Static, Quasi-Dynamic (also

known as semi-static), and Dynamic[26, 13]. The concept behind dividing up the processor

domain is a result of the fact that many programs have an optimum number of processors

such that any additional processors does not improve the performance of the algorithm. In

many cases the additional processors does only add overhead to the overall execution[13].

In fact most programs have some cost optimal point where the addition of extra processors

is not advantageous to computation[71].

A static optimization creates an a priori solution of processor assignments that des-

ignates a partition of the processors prior to the system beginning its computations. This

allocation, once set does not change for the duration of the distributed system.

Quasi-dynamic load-balancing occurs when the state of the system changes discretely

and infrequently. Thus the optimization algorithm creates discrete solutions in parallel with

the other computations being executed on the system. These changes are only invoked to

the system at specific intervals during the system’s execution. It is the goal of this algorithm

that the infrequent changes would improve the overall runtime of the system.

Dynamic load-balancing occurs continuously during execution. The system must de-

cide as to whether any changes to the system would improve the efficiency or effectiveness

of the processes being executed. If a change is computed that would improve the perfor-

mance of the system it is implemented immediately. By enacting the changes in real-time

the algorithm can continuously improve upon the system.

Static Load Balancing Optimization. In a statically load balanced system the

processors are allocated a priori to any execution of the tasks intended to be executed.

Once these partitions are made they are fixed for the duration of the execution [13] [39].

Jobs are allocated to these partitions either by the user or by the system scheduler based
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Figure 2.5 Static partitioning of a 16 processor system with 4 partitions. Each shading
represents a different allocation partition.

on the characteristics of the job. Figure 2.5 depicts one possible allocation strategy of a

sixteen processor system broken up into four different allocation regions.

Once the partitions have been created the processes are set to execute in their allo-

cated spaces. If a new process is to be inserted into the system then it is placed into what

is known as a system ready queue and waits till the next partition is available for it to use.

Thus each partition is assigned one and only one process, and the process has exclusive

rights to all the processors in that partition. Once the process has finished, the partition

is returned to a free partition pool for future assignment [13].

This system is effective for stable, long-term program executions, where there is not

a need for changes to the allocation space for each process. For most real world systems the

size of the programs being executed does change. These changes in program sizes create

an ineffective use of resources with static partitions. This disadvantage can be depicted

through the understanding that each partition can be used by only a single process. Thus if

a process uses less processors than a partition contains, those extra processors go to waste.

Conversely, if a task requires more processors than a partition allows, it must use more

than a single partition, again with the potential of wasting resources if the processors are

not fully utilized. For example, Figure 2.6 depicts a four processor partition, but with a

process that only requires two processors, the other two processes are not used. Figure 2.7

illustrates what happens when the processes require more processors than their partition

is allotted, also potentially leading to the poor utilization of resources.
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Figure 2.6 Static resource underutilization. A four processor static partition using only
two processors being utilized results in a waste of resources for the distributed
system, which is a major disadvantages of a static allocation. policy.

Quasi-Dynamic Optimization. A quasi-dynamic load balancing policy attempts

to overcome the mismatch between an allocated block size and a process’s needs that are

created through static approaches. This policy allocates the processors in a static fashion,

with the difference occurring in that the partitions can change during runtime for pro-

cesses that request a change in resources[13]. However, once the partition is created it is

not permitted to change until some specific event occurs such as [62]:

• Process Completion, where a process finishes execution and no longer needs it’s re-

sources. The processors that were assigned to this application can then be reassigned

to other processes.

• Process Arrival, where a new process enters the system for execution. This change

to the state of the system allows the newly arrived process to be immediately instan-

tiated onto the available processors.

• Allocation Change, where the processors are reallocated based upon some new infor-

mation about the state of the system. One example being if a process required a

change in processor amount during execution.

Studies have shown that this approach to processor allocation has results that are

practically identical to that of a static approach [13]. However, there does exist a grey

area, especially when examining reallocations that occur via system state information

changes. This class of events can be considered to provoke changes to the system that are

2-9



Figure 2.7 Static resource overflow. A process that uses more than a single partition
of processors for a twelve processor static partition system divided into two
partions of six processors each. The processors within the thick rectangle are
used by the process; the other three processors are wasted resources.

more closely related to dynamic allocation strategies, which have been shown to be more

beneficial than that of the static methodology [13].

Dynamic Optimization. Whereas quasi-dynamic policies takes into account the

different sizes of executing programs at the beginning of their execution, it typically does

not take into account how the partition sizes might need to vary during execution. As

mentioned earlier, there is some grey area to this claim in that allocation changes based

on system state information can be viewed as the same type of changes that a dynamic

policy invokes. In order to handle these changing partition sizes during runtime dynamic

policies have been developed. Dynamic processor allocation policies continuously change

the processor allocations throughout runtime. Thus, if a process no longer needs a processor

during runtime, a dynamic policy would reallocate that processor so that it could be used

by a different process. Overall this ensures that the system resources are utilized to their

fullest.

One disadvantage to this method lies in the cost of deallocating a processor from one

job and reassigning it to another. As long as the cost of preemption remains small this

type of policy can be effective. For shared memory systems a low cost for reassignment is
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typical. A distributed memory system typically would not have as low an overhead cost as

the entire process would have to be relocated each time a new allocation is performed[13].

2.3 Objective Via Symbolic Notation

Their exists a variety of objectives that can be examined for a load balancing sys-

tem. When incorporating the temporal aspect of a system for scheduling the processes

these objectives could include completion time (makespan), mean/maximum flow time,

mean/maximum tardiness, mean/maximum machine idle time, mean load and others [32].

When focusing only on the allocation portion of the system without regards for the fu-

ture executions a different set of objectives including processor load performance, intra-

processor communication costs should be examined[38]. With this in mind we focus our

discussion to those objectives that do not rely on temporal based allocation.

Following the notation of Hluchy, Dobrovodsky, and Dobrucky [38], for a static map-

ping of a parallel processor decomposition problem we define the network on which the

processes are to be mapped to be the graph Si(Vi, Ei) where Vi = (1, 2, ..., qi) represents the

program tasks for process i ∈ N , and Ei represents the communication between sections

of these tasks. We let N represent the number of distinct processes running on the system

at any given time.

The system for which the processes are to be executed can be represented byH(C,EK)

where C = 1, 2, ...,K represents the processors of the distributed system and EK represents

the communication links between processors available.

Thus we define M to be the mapping function between hardware graph H and the

process graphs Si ∀i ∈ N . M would specifically map the set of qi, ∀i ∈ N vertices onto the

p processors. A standard approach to this representation is expressed as an integer q-tuple

in the closed interval [1,K] of

M = (n1, n2, . . . , nq) (2.1)

where vertex ni of the software graph is mapped to vertex i of the hardware graph. This

mapping problem creates a search space of KN number of mappings, making it an NP-

complete problem due to its solution increasing more quickly than polynomially [38]. By
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being classified as an NP complete problem this type of problem cannot be solved in

polynomial time, thus the time necessary for the algorithm to solve the problem increases

exponentially with the size of the problem.

In a single process(N = 1) static mapping problem the overall system would be

optimized such that at runtime the mapping M minimizes the completion time of the

single process. This is done by balancing the load across all of the processors as well as

minimizing the communication that needs to be done between processors.

For a single process system if we define the load of processor j to be Lj , then with

K processors the average load (L̄) can be defined as

L̄ = 1/K
K
∑

j=1

Lj (2.2)

and thus the load imbalance (LIj) of any processor j would be

LIj = |Lj − L̄| (2.3)

and the overall cost of the imbalance (CLI) for the system would be

CLI =

K
∑

j=1

LIj (2.4)

The communication cost (CCqr) of communication between tasks q and r can be

calculated as

CCqr = Cqr ∗ dM(q)M(r) (2.5)

where Cqr is the size of the message being sent, and dM(q)M(r) is the distance between the

nodes. Thus the overall communication cost (CAC) is

CAC =
N
∑

q,r=1

CCqr (2.6)
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Another factor that needs to be considered when designing this type of system is the

link imbalance resulting from the backplane topology. If we let ADli be the amount of

data transferred across the link li then we could find ADli as

ADli =
N
∑

q,r=1

Cqr ∗RAM(q)M(p)(li) (2.7)

where RAM(q)M(p)(li) would be equal to 1 if the routing algorithm RA sent information

along link li and 0 otherwise. The mean amount of data (ĀD) then would be

ĀD = 1/T
T
∑

i=1

ADli (2.8)

and the imbalance (ADIli)would be

ADIli = |ADli − ĀD| (2.9)

Given all this information we can develop the cost function with coefficients β, α, γ.

CF (M, t) = βFvertex(M, t) + αFedge(M, t) + γFroute(M, t,RA) (2.10)

Where we define different potential functions for each part to be

Fvertex(M, t) = β(t)
K
∑

i=1

|Li − L̄| (2.11)

Fvertex(M, t) = β(t)
K
∑

i=1

(Li − L̄)2 (2.12)

Fvertex(M, t) = β(t)maxi(Li) (2.13)

for Fvertex and

Fedge(M, t) = α(t)
∑

i,j=1

CCij (2.14)
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Fedge(M, t) = α(t)maxij(CCij) (2.15)

Fedge(M, t) = α(t)
∑

j=1

(CCij) (2.16)

for Fedge, and

Froute(M, t,RA) = γ(t)
T
∑

li=1

|ADij − ĀD| (2.17)

Froute(M, t,RA) = γ(t)
T
∑

li=1

(ADij − ĀD)2 (2.18)

Froute(M, t,RA) = γ(t)maxli(ADli) (2.19)

for Froute. These formulae are easily expanded to greater than one process by summing

each process’s objective value across all processes, thus for any generic static mapping of

K processors we would have

CF (M,K, t) =
K
∑

i=1

CF (M, t) (2.20)

It can then be seen that for any instance of time, this evaluation would measure the overall

effectiveness of an allocation strategy of the system. Thus even for a dynamic system this

equation is a measure of the effectiveness of a given allocation strategy at any particular

moment in time.

The edges, vertices, and routes that these formulae deal with are each indicative of

parts of the real-world problem that they are modelling. The edges correspond to the

communication links and the value for the edges relate directly to the communication

time that the communication link represents in a real world network. The vertices of the

graph represent the different processors of the system such that the value represented by

each Fvertex models the calculation load performance each processor is capable of. The

route thus is the overall communication cost between two processors given their relative

separation, this is primarily influenced by the backplane of the HPC system.
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Thus, the overall objective for this basic allocation problem is to minimize the overall

cost or

minCF (M,K, t) (2.21)

As can be seen the overall objective for even a simple load balancing problem is not

one but multiple separate objectives, thus placing this problem in the multiobjective class

of problems (MOPs). These objectives are determined by their respective weights α, β, γ.

Dependent on the needs of the system the user can thus a priori adjust these three weights

in order to find some optimal stability of the system. Another option the decision maker

has is to a posteriori select a Pareto optimal solution. While these objectives are important

for a processor allocation problem, they are by no means the only objective functions that

can be examined for this type of problem. The engineer of the allocation strategy can

include any objective value deemed important based on the specific application that is

going to use the allocation policy.

By having multiple objectives available the algorithm designer has a couple of options

available for presenting the results. As explained in Appendix B, there are a variety of

approaches for dealing with multiple objectives. The decision of which approach is to be

used should be done prior to algorithm development as it does effect the algorithm choice.

2.4 Flexibility

The flexibility of a distributed system relates to the systems ability to allow for

process preemption. Once a process is given its partition, it may or may not be able to

move its processing to other processors. A process is said to move when, during runtime,

it either gives up some of its currently used processors, or adds new processors to those

already in use. Those processes that can move are called preemptive processes [71]. An

allocation policy must decide whether to handle preemptive processes or whether it should

simply assume all processes are non-preemptive. In order to accomplish this the advantages

and disadvantages of each approach should be examined.

A non-preemptive approach to processor allocation problems makes the assumption

that none of the processes can be preempted. This is the simpler of the two approaches,
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allowing the programmer to simply ignore the preemptive ability of some processes. A

static spatial processor allocation policy takes this type of approach to partitioning the

system[13].

Figure 2.8 Process preemption capabilities example. Preemption policy for a six-
processor three-process system. Processes 1 and 2 are both preemptible and
therefore can give up or use new processors during runtime. Process 3 is
not preemptible and therefore must remain on the processors it was assigned
initially.

A preemptive approach, on the other hand makes the assumption that some, but not

necessarily all processes can be preempted. Figure 2.8 illustrates this in that processes 1

and 2 are preemptible, but process 3 is not. Depending on the design of the algorithm

processes can be specified as to their ability to be preempted. Taking this into account and

allowing for preemption is how a dynamic allocation policy works. Without preemption

the processes would be unable to move from the partitions that they were initially started

from. Some of the pitfalls of the preemptive allocation policy is that preemption creates an

overhead that must be examined and measured so that the amount of preempted processes

is limited such that it does not adversely affect the overall system[62]. This measurement

must allow for the comparison of the cost of moving processes to the value gained by doing

such.

2.5 Arrival Process

The arrival process decision is based directly on the requirements of the parallel

structure that is being examined. Two common manners for which processes can arrive
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are batches or in a Poisson arrival stream. When processes arrive in batches there is a

large group of processes that are simultaneously executed onto the system. This does not

require that all processes must arrive at the same time, just that when they are ported

for execution that they are done so en mass as shown in Figure 2.9. One problem to this

type of approach is that while the processes arrive in groups, they may not be able to all

be processed concurrently based on the limitations of resources in the system.

Figure 2.9 Batch arrival process. Processes are executed on the system in large groups
at discrete time intervals.

A Poisson arrival process occurs when applications are begun one at a time in the

system. This would be the type of arrival process for a system where any given user could

input at any time an application to be executed on the system. An allocation algorithm for

this type of process would have to continually update and expand for continuous system

allocation so that any process could be inserted without any type of batching delay.

2.6 Service Demand Knowledge

The knowledge about the application service demand is based on what is known a

priori about how long it takes to service each process requested [62]. This type of knowledge

relates back to how the engineer intends to use the system. If it is known exactly what

type of applications are going to be executed, and how these applications are going to be

executed, then we can predict how much time the applications are going to take. This

type of knowledge is deemed a deterministic approach to scheduling. Conversely if it is

only known that the applications are going to be executed for some expected amount of

time, with some variance, then the arrivals fall under a probabilistic service demand model.

With either of these models the algorithm would require the expected service time, or the

service time distribution, of each application by which it could configure the allocation

algorithm, thereby leveraging this additional knowledge to the benefit of the system [39].
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The final choice of device demand time would be where we have no knowledge about

what programs are going to use the algorithm. With this type of demand knowledge we

would simply have to include either user input or some other method for checking the

active processors to test for process completion.

2.7 Priority

When examining different processes for processor allocation it may be important to

have different priorities. With this type of system those processes with higher priority are

assigned to execute prior to those with lower priority. Thus the allocation of processors

is done such that the high priority processes receive the higher quantity of resources. If

there does not exist a need for such prioritization then all processes would be examined

as running equivalent priorities and would be given equal access to all processors on the

system.

2.8 Symbolic Problem Domain Description

Given these choices for the different alternatives of the processor allocation problem

domain we can begin to develop the overall symbolic problem domain description. Algo-

rithmically we assume we have some system with N processors that wants to execute some

K processes, K ≤ N . In the real-world problem we may have more then N processes,

yet only K of those are being assigned, and since we cannot assign more processes than

there are processors available, K must be less than N for the purposes of the assignment

problem.

The problem then is to map those K processes onto the N processors. The solution

that we are trying to find then is the set of all sets of processors allocated to each process.

Since we make the assumption that no two processes can use a processor simultaneously

we must create this mapping in a one-to-one fashion, thus preventing assignment of more

than one process to any given processor. The cost associated with each of the potential

mappings would be based on their objective evaluation as described in Section 2.3.
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• Domains, D
input Di(N,P ) - n: set of elements (processors) N ,

|n| = N ; P : set of sets s, 0 ≤ si ≤ k, K is the amount
of processes, |P | = K

output Do - set of partitions n’ for each P , opti-
mally covering the processors N

• I(x); input conditions on input domain satisfied; s ∈ P ,
all feasible s are available; N ∈ n.

• O(x, z); output conditions on output/input domain sat-
isfied; i.e.,
a feasible/optimal solution with respect to the input
domain

x ∈ Di;
z ∈ N ′: z is a feasible solution of sets;

Figure 2.10 Problem domain requirements specification for generic processor allocation
problem.

As specified in Figure 2.10 the input to this problem is the set of all processors (N)

that is to be allocated processes by the algorithm. Through this set we are able to ensure

that the processes in the system are fully utilizing all the processors of the system. We also

have the input P , being the set of sets. The search space that P covers consists of every

possible set of each process covering every possible permutation of which that process can

be executed on the system. Thus, as an example for a four processor system (N = 4),

with only a single task (K = 1) to be executed, the search space would be like that given

in Table 2.11.

N s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15
1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
2 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1
3 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1
4 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

Figure 2.11 Sample problem domain input for a processor allocation problem

For each task entered, this graph would increase by
∑N

i=1

(

N
i

)

. Thus the total amount

of sets in P is given by Equation 2.22. This is also the problem domain search space

complexity for the allocation problem.
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K ·
N
∑

i=1

(

N

i

)

(2.22)

The output of this problem domain is the set of partitions(N ’), such that ∀i ∈
N ∪ si 6= 0∧∑ si = 1. Thus not only are the sets covered, but they are covered by exactly

one process. Because of the vast search space that this type of problem deals with any

additional information concerning the problem domain can be used for pruning the search

space and thereby increasing both the effectiveness and efficiency of the algorithm.

2.9 Algorithm Parameter Control

One issue that must be addressed when developing any algorithm, regardless of the

type, is selecting amongst the operators and parameters available to the algorithm. Nearly

every high level search algorithm contains some set of parameters that must be selected a

priori to execution in order to direct the search of the algorithm. As stated by the no free

lunch theorem, no set of parameters works optimally for every algorithm [84]. With this

in mind we must select an effective approach for attaining reasonable parameters for an

algorithms execution.

Let’s assume we have some ν parameters that control our intended algorithm,Ag,

for a problem g. Then, assuming these parameters all have a potential value that lies in

the range of [0,max(ν)] then both our solution and search space would be (max(ν) + 1)ν .

The problem domain for this type of experimentation could then be described as shown in

Figure 2.12.

The input would be the algorithm and problem intended to be optimized, as well

as some knowledge of what parameters are needed to execute the algorithm. The meta

algorithm would then output an optimal set of parameters that control the algorithm. By

optimal set of parameters we mean parameters that maximize both the effectiveness and

efficiency of the algorithm A for problem g. The conditions necessary for this algorithm is

that the parameters of the algorithm are correctly specified.

The standard approach for attaining parameters for an algorithm to execute is

through a rigorous design of experiments, whereby any number of each parameter is com-
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• Domains, D
input Di - the set of parameters ν , that control

the given algorithm Ag for some problem g
output Do - ν such that Ag(ν) executes optimally;

with regards to effectiveness and efficiency
• Conditions:

I(x); input conditions on input domain satisfied;
x ∈ ν

O(x, z); output conditions on output/input domain
satisfied; x, z ∈ ν, z feasible solution

Figure 2.12 Problem domain requirements for the meta algorithm

bined in such a manner as to search for effective parameters for the algorithm. This is

a very complex, and often extremely time consuming method as it requires examination

by the user of the results, tuning the future executions based on the results found by the

already completed executions. This is the tried and true method, used in most research

areas as the standard by which to conduct experiments. A different approach would be to

use a stochastic search technique in order to tune the parameters of a sub-level stochastic

search. In this manner the controlling operators of a search algorithm are determined via

some tuning execution of another search algorithm.

2.10 Summary

There are many choices that must be examined when building a processor allocation

system, including allocation medium, objective, flexibility, arrival process, service demand

knowledge, and priority. Each choice must be considered for applicability to a real world

system. A result is the symbolic load balancing problem domain developed in Section 2.8,

followed in Section 2.9 with a discussion on optimizing algorithm parameters. The next

chapter examines algorithms that can deal with NP-complete problems. Once an algorithm

is selected, the information from the background problem domain examination can be

applied to construct a real-world system.
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III. Processor Allocation Algorithms

Many different methods have been implemented for solving domain allocation problems.

There are too many algorithms for a detailed description of each, but it is important to

examine a few approaches. This enables the selection of an effective algorithm for the

problem domain considered here. Due to the varied nature of the problem domain (see

Chapter II), the algorithms must be tuned to effectively map to user requirements. Thus

this chapter is as a sampling of algorithms for adapting to a specific problem domain.

While this is not an all inclusive list, the following are some of the algorithms used for

generating solutions to the allocation problem: Neural Networks [39], Linear Programming

[39], Opportunistic Load Balancing[39], Minimum Execution Time[39], Minimum Comple-

tion Time[39], Min-min[39], Max-min[39], Duplex[39], Simulated Annealing [39, 38, 26],

Tabu[39], A* [39], Orthogonal Recursive Bisection [26][65], Eigenvector Recursive Bisec-

tion [26], Recursive Spectral Bisection [65], Genetic Algorithms [78, 18, 39], Evolutionary

Strategies [30], Linkage Learning [7] , Diffusion Methods [38], Decision Directed Learning

[61], the Boillat Method [38], and Finite Automata [77]. These algorithms represent a

collection of both deterministic and stochastic search heuristics that have been used for

dealing with the processor allocation problem. Deterministic algorithms, by definition, uses

an incremental, repeatable approach for finding solutions[52]. Some of these algorithms use

problem domain knowledge in order to generate solutions, others use incremental search

heuristics to search the entire search space and choosing which solution is best for the sys-

tem. Stochastic algorithms, on the other hand, use random number generators to search

for solutions. Due to this randomness these algorithms can have differing solutions for each

execution of the algorithm. This makes the algorithms search a variety of locations the

search region without specifically enumerating each possible solution. This in turn allows

for solutions that are close to optimal but in a time frame that could be faster than their

optimal-search deterministic counterparts.

The algorithms examined in this chapter give a good overall picture of methods used

for load balancing optimizations, as well as potentially being implemented for a meta-

control algorithm. Three of these algorithms are deterministic in nature with only one

of which yielding a complete search of the search space to find optimal solutions. The
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Algorithm Type Guarantee Optimal? Time

Neural Networks Deterministic no < NP
Linear Programming Deterministic no < NP

Opportunistic Load Balancing Deterministic no < NP
Minimum/Maximum Execution Time Deterministic no < NP

Min-Min, Max-Min, Duplex Deterministic no < NP
Simulated Annealing Stochastic infinite time < NP

Tabu Deterministic no < NP
A∗(Best-First Search) Deterministic no < NP

Orthogonal Recursive Bisection Deterministic no < NP
Eigenvector Recursive Bisection Deterministic no < NP
Recursive Spectral Bisection Deterministic no < NP

Genetic Algorithms Stochastic infinite time < NP
Evolutionary Strategies Stochastic infinite time < NP

Linkage Learning Stochastic infinite time < NP
Diffusion Methods Deterministic no < NP
Boillat Method Deterministic no < NP

Set Partitioning Algorithm Deterministic yes NP

Table 3.1 Load balancing algorithm descriptions

final two algorithms are stochastic in nature and use high level heuristics to effectively and

efficiently search the problem domain search space. Each of these algorithms are examined

with regards to their applicability to the allocation problem. Through this examination we

get an understanding of some of the different approaches and how feasible their solutions

are for use in the processor allocation problem.

The first algorithm we examine, in Section 3.1, is a classic set partitioning problem

(SPP) algorithm. This algorithm provides a guaranteed optimal solution as it searches the

entire search space for the problem. This algorithm is selected for analysis since it maps the

allocation problem into the classic Set Partitioning Problem and finds an optimal solution

using a well known algorithm. A simpler set of deterministic algorithms is explained in

Section 3.2 with a description of the max-min, min-min, and duplex algorithms. This

set of algorithms represent some of the more basic strategies for load balancing via a

greedy heuristic. These algorithms do not guarantee an optimal solution but they do

make a high-level search of the search space. The final deterministic algorithms that are

examined are the Orthogonal Recursive Bisection and the Eigenvector Recursive Bisection

algorithm in Section 3.3. These algorithms are problem domain specific heuristics that
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have been developed as a more efficient method of finding solutions that are effective but

not necessarily optimal.

The final two algorithms that are examined in this chapter are the stochastic search

techniques of Simulated Annealing(Section 3.4) and Evolutionary Algorithms(Section 3.5).

In any finite time neither algorithm guarantees optimal solutions. However, both of these

stochastic techniques have been shown to find solutions that are closer to optimal than

the non-optimal discrete search techniques in a time frame that is much less than the

optimal discrete techniques[39]. These two algorithms are the fundamental algorithms for

stochastic search. They are based off of different real-world phenomena that are mapped

to the computational search space environment. Simulated annealing uses physical cooling

temperatures as a model, while evolutionary algorithms use biological evolution as its

model. These algorithms were both selected based on their historical effectiveness for

finding effective solutions to the allocation algorithm[39].

In each algorithm section the algorithms are presented in a pseudo-code notation as

developed by Lamont[45]. This format presents the input, output, and problem domains

as Di, Dp and Do respectfully. The algorithm itself is shown as a combination of six basic

operations: Next-state candidates, next-state generator, feasibility, selection, solution, and

objective. The next-state candidates presents the collection of all potential solutions.

The next-state generator selects from these next-state candidates those that are potential

solutions for the current phase of the algorithm. These potential solutions are filtered

through a feasibility operation that selects only those solutions that are within the feasible

region of the algorithm. Next the selection operator selects which members are to be

kept for progression to the next phase of the algorithm. The solution operator provides

some metric as to when the algorithm is finished, while the objective operator states what

the goal of the algorithm is. The combination of these components generates a complete

algorithm.

3.1 SPP Algorithm

The processor allocation problem can be mapped directly into a set partitioning

problem(SPP). The goal of the SPP is to find the minimal cost cover set that covers all
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elements without overlap[15]. If we set all the cover sets so that they consist of all of

the different combinations of processors that each process can have, and we set the cost

of each set to some function of the overhead cost for running that set of processes, then

the solution to the SPP would be a minimal cost allocation of processes to processors, the

processor allocation problem. Since in our distributed system there cannot be an overlap

of processes on a single processor, a solution to the SCP would not suffice. Only with the

constraint that there is no overlap, ie the SPP, is the solution able to be feasible for a real

world processor allocation.

The generic processor allocation SPP algorithm domain can be explicitly written out

using the notation of [45] as illustrated by Figure 3.1. This solution uses an algorithm de-

veloped by Christofides for solving the SCP/SPP but with refinements so that it is directly

applicable to generic processor allocation problems. Set covering and set partitioning prob-

lems are classical NP-complete problems [52]. As can be seen by this direct mapping, even

a simple allocation of processors across a distributed system finds itself in the NP-complete

class of problems. By adding parameters for examination such as communication overhead

or processor capabilities, the complexity of the algorithm used for solving the processor

allocation must also increase, thus making the already NP-complete problem even more

difficult.

3.2 Max-min, min-min, duplex

Max-min, min-min, and duplex all work off of the same basic principle, they are

simple algorithms that move through the unassigned processes and assign them to the

processor that has the minimum expected completion time for that process. Let us use T

to represent the list of unassigned tasks, then at each step the set of minimum completion

times(ct) M for all processors P is found for each process t ∈ T .

M = min ct(t, p)∀t ∈ T, ∀p ∈ P (3.1)

Then, for min-min, the task with the overall minimum completion time from M is

assigned to the corresponding machine. Because this heuristic takes the minimum task it
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• Domains, D
input Di(N,P )
N - set of elements (processors) n, |N | = n
P - set of sets s |s| = n, 0 ≤ si ≤ k, where k is the amount of processes
Dp - partial set of covers N ′ of elements with ∀si ∈ P, si ∈ P
El - partial set of elements n ∈ N .
L(ci) - list of El sets covered at cost ci.
output Do - set of set-partitions N ′ of elements with ∀si ∈ N ′, si ∈ P

• Conditions
I(x); input conditions on input domain satisfied; s ∈ P , all feasible s are avail-

able; n ∈ N .
O(x, z); output conditions on output/input domain satisfied; i.e.,

a feasible/optimal solution with respect to the input domain
x ∈ Di;
z ∈ N ′: z is a feasible solution of sets, F ′; F ′ ∈ Do;

• Operations
set of candidates (P ′) - reformat SPP table by block covers - tableau, find all

min-set-covers (Di) and put into Dp.

– Reduction Possibilities

if ∃ni ∈ N, ni * sj∀j ∈ P , then no solution exists

if ∃ni ∈ N, ni ∈ sk ∧ ni * sj∀j 6= k ∈ P then sk is in all solutions
next-state-generator (N,P )- tableau (N,P ), explicit part of Di. P ′ := P ′ −

si∀si ∈ Dp

selection - select sj that covers uncovered ni at min cost in tableau, such that
process has not yet been chosen, sj * Dp. sj ∈ P ′

feasibility (P ′, n, s)- n ∈ N , sinP , ∀i ∈ N, si ∈ P ′
∑

si = 1, P ′ ∈ Dp

if ni ∈ sj ∧ ni * Dp∀i ∈ Dp then Dp = sj ∪Dp

feasibility (sj ,L)- if E
′ ∪ sj * El∀El ∈ L(ci), ∀c′ < ci ≤ c′ + c(sj) then reject sj .

solution (P ′,Dp,z) - ∀i ∈ N, si ∈ P ′ ∪ si 6= 0, P ′ ∈ Dp

objective - min(ci∀i ∈ P ′) = z = Dp

Figure 3.1 Algorithm domain requirements for the SPP algorithm(from Christofides
[15])
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has been shown to change the machine availability status by the least of any assignment

algorithm [39].

Max-min is different only in that instead of assigning the task with the minimum

completion time to the corresponding machine, max-min assigns the task with the overall

maximum completion time. By assigning tasks in this order, max-min attempts to alleviate

the penalties that occur from those tasks with longer execution times, and thus balancing

the overall system.

The duplex algorithm does both the min-min and the max-min and chooses for itself

the best value from the two.

• name: MinMin Algorithm
• domains:

– Di is the set of all elements U to be assigned to
the graph G

– Dp is the set of minimum costs of elements of M ,
and the current set of assigned elements S ′

– Do is the set S whose elements are mapped to G
based on min cost

• operations, F: I(x); x ∈ Di O(x, S); x ∈ Di, S in Do

I ′(x,M, S′); x ∈ Di, M , S′ ∈ Dp;

– next-state candidates: set of all unassigned ele-
ments U , with minimal completion costs generated
as M

M = {min0≤j<µ(ct(ti,mj)), ∀ti ∈ U}
– next-state generator: U −→ U ∩ S ′

– feasibility: S′ is an incomplete spanning tree, S ′ ∈
Dp

– selection: S ′ −→ S′ ∪min(ct(ti,mi))∀i ∈M
– solution: U = ∅

– objective: min costS

Figure 3.2 Algorithm domain requirements Min-Min algorithm

The algorithm domain for the Min-Min problem is given in Figure 3.2. The only

difference between the min-min algorithm domain and the max-min algorithm domain is

that the max-min algorithm domain selects the maximum cost elements to be added to S
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first. Thus it uses the same set M , just from this set it chooses the maximum element to

be added to the solution at each state.

3.3 Orthogonal Recursive Bisection

Orthogonal recursive bisection continuously cuts the graph in half, alternating be-

tween vertical and horizontal cuts. These cuts are typically made based on the physical

structure of the problem.

The principal behind this approach is that there is a natural parallelism and division

by using only half of the graph each time. By splitting each section of the graph in half and

alternating processes of each of the split halves the load is effectively distributed equally.

This is of course with the assumption that the load is homogenous throughout the problem

space [26].

This approach is done by finding some median for each graph section and then

grouping the graph nodes for that section in accordance to whether they are greater than

or lesser than that median. The orthogonal recursive bisection specifically alternates the

median between the different available axes so that the bisection occurs in different axial

directions each time through.

Eigenvector Recursive Bisection. Eigenvector recursive bisection cuts the graph in

half each time, these cuts are made based on the eigenvector of the matrix as opposed

to the mean used in the orthogonal recursive bisection approach. This approach tries to

mimic the results of a neural net. It is a more computationally expensive method than the

orthogonal recursive bisection heuristic, but has proven to be more effective as well [26].

The algorithm domain is the same as that given in Figure 3.3 with the exception that the

next-state generator splits the graph based on the eigenvector as opposed to the median.

3.4 Simulated Annealing

Simulated annealing is a method by which the system is made analagous to a slow

physical cooling temperature. This is one of the more common approaches to processor

allocation problems [39, 38, 26]. What happens is that the system is given a temperature
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• name: Orthogonal Recursive Bisection Algorithms
• domains:

– Di graph G with set of all elements to be mapped
T

– Dp S
′ is the set of all sets of nodes from G, ∪S ′i∀i ∈

S′ ⊂ G

– Do S the set of all subsets of G such that all T
can be mapped to G, one T per subset of S

• operations, F: I(x); x ∈ Di O(x, S); x ∈ Di, S ∈ Do

I ′(x,M, S′); x ∈ Di, S
′ ∈ Dp;

– next-state candidates: S

– next-state generator: S ′ −→ (12)Si∀i ∈ S
– feasibility: S′ ∈ Dp

– selection: S −→ S

– solution: | S |=| T |
– objective: min costS

Figure 3.3 Algorithm domain requirements Min-Min algorithm

T . The algorithm then iteratively proposes changes to the system, slowly decreasing the

temperature. This change is evaluated with the cost function based on the objective

chosen, we allow the cost function to be CF (M, t). Then, if the cost function decreases

from what it was at the previous state then the change is accepted unconditionally. If

the cost function increases from the previous state then the change is accepted with a

probability exp(−δCF (M, t)/T ), this is known as the Metropolis criterion[26, 38].

The concept behind simulated annealing is that it is necessary to use a change in

temperature δT that is small enough that the system can change between states of the

system, yet large enough that the solution doesn’t get stuck in a local optima. If the

temperature is too low then the system mimics a simple hill climbing algorithm and stops

at whatever local optimum it finds. If the temperature is too high then the algorithm acts

as a random search ignoring the cost function totally [1].

Thus the simulated annealing algorithm works by starting at a high temperature

that slowly decreases so that the solution analogously settles into the global optimum. In

3-8



fact, if this change in temperature is sufficiently slow enough, then the simulated annealing

algorithm guarantees that the global optimum is reached [31].

The basic approach to applying this heuristic to the load balancing problem is to

change a single node of the solution graph at random each time through the system. Then

determine whether to accept or reject based on the metropolis criterion, and continue on

until the temperature is near zero [26].

There are a variety of modifications available to this algorithm for tuning it to the

problem it is intended to optimize. The change in temperature δT can be modified to slow

or quicken the rate of convergence. The SA can be seeded a priori with good solutions

that it can build off of [39]. The original temperature T can be set to different values, as

can the stopping criteria. The different control procedures, solution modification, solution

comparison equation, and selection, can be modified as well for this algorithm[39]

Other than the generic modifications that can be implemented for the simulated

annealing algorithm, many specific adaptations of the simulated annealing algorithm have

also been suggested. One such addition is to allow multiple changes for each state. This

process is called collisional simulated annealing. Collisional simulated annealing allows

some fixed number of changes each generation, while at the same time checking for collisions

that adversely effect each other. The collision correction is done either by a rollback device

or by taking the possible changes, classifying them, and ensuring that all those changes

within each class do not collide. The rollback is highly expensive in terms of overhead

necessary to perform it. Research efforts have shown that collision classification tends to

fail to work when collisions occur between widely separated changes (in terms of Hamming

distance) [26].

The algorithm domain for the simulated annealing algorithm is given by Figure 3.4.

Where Φ represents the evaluation of the potential solution, m represents the mutation

operator that mutates the operator, δ is the cooling rate for temperature T , and Tmin is

the minimum temperature of the system.
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• name: Simulated Annealing Algorithm
• domains:

– Di is an initial random solution S ′, a system tem-
perature T , and a cooling rate δ

– Dp is the set S′

– Do is the set S whose elements are mapped to G
based on min cost

• operations, F: I(x); x ∈ Di O(x, S); x ∈ Di, S ∈ Do

I ′(x,M, S′); x ∈ Di, S
′ ∈ Dp;

– next-state candidates: set of all available possibil-
ities

– next-state generator: T → T−δT , S ′ −→ mΘm(S)

m a sequence {m(i)} of mutation operators

m(i) : X
(i)
m −→ τ

(

Ω
(i)
m , τ

(

Iµ
(i)
, Iµ

′(i)))

– feasibility: S′ is an incomplete spanning tree, S ′ ∈
Dp

– selection: S −→ S ′ when Φ(S′) < Φ(S) iff

rand[0, 1) > 1

1+e(
Φ(S)−Φ(S′)

T
)

– solution: δT < Tmin

– objective: min costS

Figure 3.4 Algorithm domain requirements for the simulated annealing algorithm

3.5 Evolutionary Algorithms

Evolutionary algorithms (EA) consist of a class of algorithms that use the concepts

of genetics to help enable them to explore the search landscape. EA’s have been used for

a wide variety of applications including processor allocation problems [30] [18] [7]. In an

evolutionary algorithm a collection of individuals each known as chromosomes, consist in a

group defined as a population. The population moves through generations by using genetic

operators such as mutation and recombination. Mutation works by inserting new genetic

material into the population, recombination by transferring preexisting genetic material

between two or more individuals of the population. There are many different varieties of

genetic operators each with different parameters that can be modified.

Random changes of the population via genetic operators is not enough to lead the

population to optimal solutions. Evolutionary algorithms must also use a type of selection
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operator that identifies members of the population for propagation to the next generation.

These operators effectually lead the population to search in areas of higher fitness, thus

are able to obtain closer and closer to optimal results. Because selection operators use

stochastic control parameters EA’s are able to not confine themselves to one part of the

search area, and can thus search the entire landscape even while moving towards near

optimal solutions. For a more formal description of evolutionary algorithms, see Appendix

C. A pseudocode algorithm for a generic EA is given in Figure 3.5.

As explained by Merkle [48][47] this definition has advantages over Bäck and Schwefel

(see Appendix C) in that it is not limited to only a single operator for mutation, recom-

bination, nor selection, nor a single parameter for any operator. This algorithm definition

also allows for population sizes of µ′ + µ and µ′, which are indicative of µ + λ and µ, λ

algorithms. When λ = 1 the description can then also represents the µ+1 algorithm. The

final difference between Merkle and Bäck’s algorithms is that Merkle represents the fitness

evaluation as being a parameter of the selection operator as opposed to Bäck’s explicit

evaluation call.

t := 0;
initialize P (0) := {~a1(0), . . . ,~aµ(0)} ∈ Iµ
evaluate P (0) := {Φ(~a1(0)), . . . ,Φ(~aµ(0))}
while (ι({P (0), /dots, P (t)}) 6= true) do

· recombine : ~P ′(t) := r
(t)

Θ
(t)
r

(P (t));

· mutate : P ′′(t) := m
(t)

Θ
(t)
m

(P ′(t));

· select : ifχ

· thenP (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

((P )′′(t));

· else P (t+ 1) := s
(t)

(θ
(t)
s ,Φ)

((P )′′(t) ∪ P (t));
· fi
· t := t+ 1;
od

Figure 3.5 Merkle’s generic EA notation

Using 3.5 an evolutionary algorithm is defined such that

• I is a non-empty set,

• {u(i)}i∈N a sequence in Z+ (the parent population),
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• {u′(i)}i∈N a sequence in Z+ (the offspring population),

• Φ : I −→ < a fitness function,

• ι : ∪∞i=1(Iµ)i −→ {true, false}(the termination criterion),

• χin{true, false},

• r a sequence {r(i)} of recombination operators r(i) : X
(i)
r −→ τ

(

Ω
(i)
r , τ

(

Iµ
(i)
, Iµ

′(i)))

• m a sequence {m(i)} of mutation operators m(i) : X
(i)
m −→ τ

(

Ω
(i)
m , τ

(

Iµ
(i)
, Iµ

′(i)))

• s a sequence {s(i)} of selection operatorsm(i) : X
(i)
s xτ(I,R) −→ τ

(

Ω
(i)
s , τ

((

Iµ
′(i)+χµ(i)

)

, Iµ
′(i+1)))

• Θ
(i)
r ∈ X(i)

r (the recombination parameters),

• Θ
(i)
m ∈ X(i)

m (the mutation parameters),

• θ(i)s ∈ X(i)
s (the selection parameters),

The algorithmic complexity of an EA is equal to the amount of evaluations that

must be performed by the algorithm. Thus if we set tmax as the maximum amount of

evaluations that the algorithm must perform the algorithm would have a complexity of

O(tmax). As long as this number is relatively low this algorithm is efficient. As the amount

of evaluations increase the effectiveness in turn increases, but the efficiency decreases. The

only good thing is that the efficiency decreases linearly. Thus even with a large amount of

evaluations we still have an algorithm that is relatively faster than some of the deterministic

approaches.

3.6 Summary

As shown in Table 3.1, there are a large variety of algorithms available for allocating

processors. The six algorithms examined in this chapter, i.e., Set Partitioning, Max-

min/Min-min, Orthogonal Recursive Bisection, Eigenvector Recursive Bisection, Simulated

Annealing, and Evolutionary Algorithms, illustrate the types of algorithms available. The

selection of any algorithm depends on the choices made when developing the problem

domain. Each algorithm can produce a solution which is more applicable or more effective

based on the requirements of the system to be balanced. An understanding of how the
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algorithms work is needed for effective mapping of the problem domain to the algorithm

domain and for producing solutions that meet application requirements.

The next step in model development maps the algorithm domain information to the

problem domain that best meets the needs of the intended system. This step entails se-

lecting an algorithm capable of addressing the problem domain with reasonable optimality

in a time frame acceptable to the user.
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IV. High Level Design

From the previous chapters have explained the problem and algorithm domains. The first

step in their mapping is to examine the problem domain and select the development path as

indicated in Section 4.1. Next the actual modelling of the problem domain to the algorithm

domain mapping is accomplished (Section 4.2). Finally, the selection of an evolutionary

algorithm is given in Section 4.3.

4.1 Problem Depiction

Different available options as described in Chapter II are examined, specifically choos-

ing between the choices as listed in Table 2.1 which is again provided in Table 4.1 though

with the load balancing choices emphasized.

Allocation Medium:
spatial vs. temporal

Objective:
min communication vs. min processing vs. min routing

aggregate objective vs. Pareto multiobjective

Flexibility:
non-preemptive scheduling vs. preemptive scheduling

Arrival Process:
batch of applications vs. Poisson arrival stream

Service Demand Knowledge:
none vs. probabilistic vs. deterministic

Priority:
equal priorities vs. distinct priorities

Table 4.1 Decision choices for an allocation algorithm. The selected choices are itali-
cized.

Allocation Medium. When choosing between a temporal or a spatial method for

processor allocation an examination of the literature confirm that a spatial approach is

the more common [13, 38, 18, 7]. For our purposes a spatial approach has the benefits of
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allowing for a physical distribution of the processors. Since it is unknown what processes

are going to be executed on the processors we cannot determine a priori how much each

time slice each process requires for a temporal division. Also, since some of the programs

inevitably require a certain amount of processes to execute simultaneously across multiple

processors it is more effective to organize these processors such that their relative proximity

limits their communication overhead then to try to keep track of which processor each

task is located on and communicate across unknown amounts of network. One argument

against using a spatial based policy on a potentially heterogenous system is that the slower

processors can delay the overall computation. This problem can be surmounted by giving

these slower nodes smaller portions of the processes, or by defining the process blocks such

that the processors for each task are relatively equivalent.

Thus, the spatial partitioning policy is the more prudent method. It gives us the

advantage of proximity, which is important for a system that we have no a priori knowledge

concerning how much intra-processor communication the processors require. By using

this method the user also gains more control over what processes are assigned to what

processors, thus we can ensure that the overall system is loaded appropriately with respect

to the performance of each processor on the system. Also, since the system that this

research effort focuses on has such a high amount of unknowns with regards to the processes

being executed, we cannot guarantee that all of these processes would be able to support

the interrupts of the temporal based load balancing.

Spatial Policy Selection. We propose a system that works using a dynamic approach

to load balancing. By dynamic we mean that the system can, during runtime, change

the allocation space of processes so as to improve the performance of the system through

balancing the overall configuration as much as possible. Multiple studies have shown that

dynamic approaches have through multiple studies shown themselves to be more effective

than either static or semi-static approaches[13, 39].

The static policy has the advantage of being easy to implement as well as being

a very stable execution approach [13]. Unfortunately this policy does not allow for any

adaptation to changes in the system. It only allows for a specific amount of processes
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to execute at any given time. If the amount of processes is greater than the amount of

partitions then those extra processes are not able to take advantage of the extra resources

that might be available on the system and thus are unable to be processed. On the other

hand, if the process requires more processors than its partition has then it would need to

take an additional partition in order to execute. These partitions may or may not be local

to one another depending on what else is running on the system. Again, any processors

that are not utilized by this process within these partitions would be wasted to the overall

system. This leads to a poor overall resource utilization within static partition policies[13].

In a dynamic policy the partitions change throughout runtime based on the needs

of the processes. One potential disadvantage to this approach is that if a process releases

one of its processors, which is then reassigned by the dynamic policy to a different process.

Then if the original process requires another processor, it is forced to use a processor that is

potentially distant creating an excessive amount of communication delays, or the algorithm

would force one of the more local processes to move so that the original process can claim

one of their processors. Either way this type of occurrence would be very expensive for

the processes involved. But, on the other hand, by allowing for dynamic preemption the

processes can be mapped so as to avoid routes with excessive communication as well as

allocating processors that are released by processes during runtime.

As with real-time scheduling systems, dynamic load balancing systems have often

been examined in an overly simplistic fashion due to academic constraints [46]. For this

reason this research investigation focuses on one part of the overall problem for scheduling

and allocating processes and processors in a real-time manner. While it is infeasible to

assume that this system perfectly mimics a real-world system we can limit our assumptions

concerning the different aspects of the system so as to minimize the amount of error that

occurs overall.

Objective. The objectives that need to be examined are all based on the overall

balanced allocation of the processors to the processes. The first objective that must be

examined is that the system does not use more processors than are requested for our

specific processes, but that it uses at least the amount of processors that are required
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for each task. The reason that the lower bound exists is obvious. For the upper bound,

the amount requested, we do not want to waste processors on processes that cannot take

advantage of the resources.

Since preemption is a real-world item that can happen to a distributed process with

high cost, and potentially high benefit, we must take that into account for this system. A

balance must be made between the preemption that occurs because a task looses one of its

processors and the preemption that occurs when a task is given another processor for which

to use. Both cases need to be considered for both their advantages and disadvantages to

the system. If a processor is removed from a process, then that process must reallocate

its resources and redistribute itself, creating a large cost to the process and its overall

execution time. When a process is given a processor the process must also redistribute

itself to the new processor, this causes some overhead, but the hope is that the addition of

a new process is able to benefit the processes, and thus the system’s, overall performance.

Another objective that must be taken into account is the distribution balance. As

described in Section 2.3 if the processes run on a heterogeneous system then a skewed

distribution of processors could have an ill-effect on the algorithms performance [7]. Thus

it is important that the algorithm try to assign processors that are relatively comparable in

performance. Using this type of balancing the potentially heterogenous system is virtually

converted to as much of a homogenous system as possible. This allows those applications

being run to be able to make the assumption that they are running on a homogenous

system.

As with the processor balance of the system, the cost of communication must also be

examined. The algorithm must ensure that the overall communication overhead for each

process is minimized. To do this we have to consider the relative backplane speed as well

as the communication topology of the network with respect to the communication costs

between the different nodes.

The final objective that must be examined with this algorithm is the amount of

processes that are not executed. We clearly want to minimize the number of processes

that are not placed in the schedule, thus trying to run as many of the applications as
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possible within the bounds of the constraints given by the amount of processors required

and requested for each process.

Flexibility. Not all processes are able to be preempted. Because of this the allocation

algorithm must take into account those algorithms that cannot be preempted. This is done

with a constraint on the algorithm such that those processes that are not preemptible

are not moved from their allocated processors in the next state of the system. Those

processes that are preemptible should be allowed to roam amongst processors, but the

evaluation function must take into account the high cost associated with preempting a

process. Whether or not a process is preemptible should be stated by the user of the

algorithm a priori to the execution of the algorithm so that the generated allocation

policy can ensure feasible execution of the tasks.

Arrival Process. The arrival process expected for this algorithm is a batch of pro-

cesses arriving in a Poisson manner. The batch of processes are entered by the user of the

algorithm for execution, once the batch is selected for execution the algorithm computes

the next state of the system and outputs that next state. This is not a static policy in

that the processes can arrive at any time either from the user of the system, or from the

underlying control program of the operating system itself. If either of these two control

components signal that a change to the system is necessary, the algorithm takes the current

state information and generates the next state of the system.

Service Demand Knowledge. There is no expected service demand of this algorithm.

It takes the information provided to it from the outside world and calculates the next

state of system whenever a change occurs. This change could be a process being finished

internally to the system, or some change based upon the needs of the user of the system.

Only at these points does the program recalculate the next state of the system. The ”time-

to-live” of the processes is not known either, thus the algorithm must be reactive instead

of proactive in its computations.
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Priority. It is assumed that all processes entered into this system have equal priority.

No process is allowed to preempt another process based on the process priority, unless done

manually by the user of the system.

4.2 Representation

As with any algorithm the representation used is highly important to the develop-

ment. For the purposes of this research investigation the representation of the distributed

system’s hardware, and also the state of the system (as seen by the algorithm) are critical.

The key aspect of these representations is that they allow us to map the hardware metrics,

processor allocation, and the user execution requests all to a form that would be amenable

for algorithmic manipulation. The representations chosen must also be compatible with

the system model that is developed. Only through this compatibility can the algorithm be

mapped effectively to the problem.

Hardware. For representing the hardware it is not essential for us to have the absolute

values of the different processor speeds and communication latencies. It is important

however that some type of relativistic measurement exists so that we can compare how

each component works against the overall system. By taking a percentage approach to

hardware we allow ourselves to compare only how each part of the distributed system

works in comparison to each other without worrying about the real-world equivalent of the

performance metrics.

Since the system is assumed to be composed of a heterogenous set of processors, in

order to get the most performance out of the system, we need to be able to take into account

the different processors relative performances. Given that we have N processors we create

an array P of 1 . . . N such that P (i), 1 ≤ i ≤ N represents the relative performance of the

processor identified by i. The relative performance is defined as the percentage processing

capability against the optimal processor, or

P (i) =
Pf(i)

max(Pf(j)∀j ∈ N)
(4.1)
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where Pf(i) is the performance of the processor i based on the metric decided upon

by the operator of the distributed system. Various metrics can be used based on the

desired accuracy desired by the administrator of the system. There also exists a variety of

benchmarks in the commercial world that can be used in order to measure the processor

capabilities.

The same type of measurement is to be done with the communication latencies of the

system. This time a matrix C is used such that Cij represents the relative communication

latency of processor i to processor j. Not all processors need to communicate, those that

don’t are represented by a 0 in the matrix showing that there is no direct communication

between the processors. By having the relative communication latencies between the dif-

ferent processors we can try to organize the processes so that the communication necessary

for the system is minimized.

One improvement that can be done to the system is to have the center diagonal of

the communication matrix be set to the processor performance results. In other words

Cii = P (i), ∀i = 1 . . . N (4.2)

This would minimally reduce overhead for the system and allow all the hardware informa-

tion to remain in a single matrix.

States. Time for the distributed system does not necessarily have to be based on a

standard clock. Instead a more practical manner for representing the transition of states

is that of being between states[71]. A state(S) is defined as the mapping of the processes

to the processor at some time of the system t. At any given time we define the system as

being able to support up to K tasks, K ≤ N . The effective and efficient mapping of these

tasks to the N processors is the overall goal of this system. A state at any given time S(t)

then consists of the following items:

Number of Processors (N) being the number of processors that the system has control

over for the current time step.
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Number of Processes (K) being the number of distinct processes, or programs, that

the system is supposed to map to the N processors.

Current Reference List (Ref) being the identifying list of items that are in the

system. This list contains the information concerning each process that the system is

dealing with including the inputted identifier of the system, its numerical identifier in the

process assignment array, the preemption capability of each process and the number of

processors the user requested and required for the process.

Processor/Process Assignment Array (pAssign) being the array that assigns the pro-

cess given by it’s numerical process identifier (as stated in Ref) to the processor identified

by the index of the array, mathematically pAssign(i) = j where i is the processor number

(1 ≤ i ≤ N) and j is the process identifier (1 ≤ j ≤ K).

Since everything except pAssign is known a priori to the state it is the finding of the

near-optimal pAssign matrix that this is the focus of this research effort.

Requests. In order to go between states a request system is given that would represent

what changes to the current system need to be done in order to transition to the next state.

A request is defined with the following components:

Name being the unique identifier given to the process by the user.

Number Processors Required being the amount of processors the process requires for

execution.

Number Processors Requested being the amount of processors the user would ideally

like to have assigned to the process.

Preemptability being whether the process can be preempted.

Each request(rl), where l is the request identifier out of L total requests made, can

then individually impose upon the current state some change that would alter it when cre-

ating the next state. The collection of all of these different requests (R = r1, r2, r3, . . . , rL)

is the maximum differences between the current state (S(t)) and the next state (S(t+1)).
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State Transitioning. Given that the system is at a current state S(t) with a list of

requests imposed upon it R(t) consisting of individual requests r1(t), r2(t), . . . rL(t). The

transition occurs when moving to state St+1 such that each of the requests has been im-

plemented on St to the maximum extent allowable given the amount of resources available

on the system. Specifically the reference list(Ref) and number of processes of state S(t) is

updated to include the new processes that have been added to the system, and remove all

the processes that have been requested to be removed from the system. Figure 4.1 depicts

a typical request list used to transition between states.

Figure 4.1 A standard request list used for providing information about the current state
so that the algorithm can effectively transition to the next state.

Once the reference list and the number of processes of S(t) is updated the new state

S(t + 1) is created with the initial assignment array being set to pAssign(t) minus the

processes that are removed.

At this point the new state is sent for processing by the algorithm for attempting to

find optimal processor assignment for load balancing. The only thing that is changed by

the algorithm is the assignment array (pAssign).

4.3 Evolutionary Generation

Given a representation of the state of the system, along with the method by which

the requests for changes to the system state are made an algorithm needs to be developed
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that can generate an optimized next state of the system. Due to the complex nature of

the search space[38, 65] an Evolutionary Algorithm (EA) is used . EAs have continually

shown their effectiveness for dealing with NP-complete problems[5, 75]. For the processor

allocation problem specific, EAs have been statistically shown to be more effective than a

range of other heuristic algorithms[39]. In fact we use three evolutionary algorithms for

this research effort. We have a primary EA, the allocation EA, that actually finds the

next state of the distributed system. In order to help evolve this EA, a meta-EA is used

for tuning the parameters of the allocation EA. The third EA is a competitive EA that

generates test strings to try to emulate and/or stump the allocation EA. The combination

of these second two algorithms helps to ensure that the allocation EA is an efficient and

effective heuristic.

As given by Michalewicz and Fogel, for every algorithmic design we must have at

least the following three items[52]:

• Representation

• Objective

• Evaluation

Thus for each of the EAs used we describe the problem they are designed to handle along

with these respective design items. This allows us to progress to the more detailed design

and actual algorithm implementation.

Allocation EA. The allocation EA is the primary heuristic for this research investi-

gation. It’s purpose is to actively divide the processors amongst the different processes.

Specifically this algorithm would make changes to the partitions such that the system

moves from a current state of the system, s(t), to a new state s(t + 1) while minimizing

the overall cost on the system and yet maximizing the effectiveness of the distribution of

processors. The representation used for this EA is based directly on the state information

described in 4.2. This allows for easy conversion via a graphical user interface between

the user and the allocation EA.
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Because of all the variables in the system, the allocation EA must manage a com-

bination of objectives effectively. It must ensure that the processes have an appropriate

amount of processors based on the amount they respectively require/request. The prox-

imity of the different processors must also be examined. Each process that has more than

one processor must be organized such that the communication overhead between proces-

sors is minimized. Since the systems that this utility can be run on does not necessarily

require homogenous processors, nor homogenous communication links, these variables are

inputted into the algorithm in a representation such as described in Section 4.2 in order

for the EA to better balance the overall system.

The reason why this system would not be classified under a static configuration

resides in the fact that this system is able to update temporally. In a static environment

the system is constrained from the beginning to having partitions of certain dimensions.

If a program runs under these dimensions then the unused processors are wasted. If a

program requires more processors than a partition has available then it must use other

partitions, again wasting whatever processors are in its partitions that it does not need.

This proposed system tries to alleviate this problem by allowing the system to reallocate its

partitions as necessary. Thus a user at any time can execute processes on the distributed

system and the allocation EA would change the allocation space so that processors are

utilized to their fullest.

The evaluation function of this EA is based on minimizing the overhead cost objec-

tives and maximizing the hardware usage (with respect to the processes) at each change

in the systems allocation configuration.

Since this is to be developed into a utility that could be used by researchers visual-

ization of the system is important. A graphical user interface (GUI) for this algorithm is

incorporated so that commands for execution can be entered into the system. The GUI

allows the user to input requests for changes that are to occur for the next state of the

system. As shown in Figure 4.2, the GUI is a central point for examination of the critical

points of the algorithm including:

• Current State of the Distributed System
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Figure 4.2 A visualization utility to display the information pertinent to the load bal-
ancing algorithm. Included in this visualization is the communication costs,
the current state of the system and the next state of the system. The user
would control the inputs to the algorithm via the GUI panel.

• Proposed Next State for the Distributed System

• Changes that are to occur to the Distributed System

Competitive EA. Though the allocation EA is designed for being able to be converted

so that it runs on a real-world distributed system, it is not used for beyond development,

testing and evaluation. Thus a simulation of potential inputs for the EA is necessary. That

is where the competitive EA comes in. The competitive EA is a coevolutionary algorithm

that uses the principle of competition for EA improvement as described in Appendix D.

It takes as input the state of the system as given by the allocation EA and produces, as

output, a new list of requests for the allocation EA to execute. In this manner it mimics

a user of the allocation EA system, specifically one who tries to stump the allocation

algorithm. The representation used for storing all of this information is identical to the

request list as described in Section 4.2 so that it can be easily imported into the allocation
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EA, and also because it can better mimic the real world requests given to the allocation

EA.

The competitive part of this EA comes into play in that the development of new

request lists is based on the objective of making the allocation EA create bad partition

policies. Thus this EA helps us to discover sources that can be improved upon in the

allocation EA, as well as discerning problems that could occur based on the requests

possible from the user. The overall objective of the competitive EA is then to maximize

the evaluation of the allocation EA.

Meta- EA. The effectiveness of an EA can be largely based on the operators and

parameters chosen for implementation [5]. The analysis of parameters is a large com-

binatoric problem in itself [80]. Thus in order to further optimize the allocation EA a

meta-EA is developed that tunes the parameters. This meta-EA is used only on the initial

tuning of the allocation EA, and not for the actual running of the allocation EA itself.

The meta-EA is a separate EA that interfaces with the allocation EA and appropriately

tunes the parameters. Its objective is based directly on how effectively and efficiently the

allocation EA can handle requests given to it by the competitive EA. The representation

of the chromosomes within this EA are the different operators and parameters available

to the EA that it is tuning. It’s objective is to maximize the effectiveness and efficiency of

the algorithm that it is tuning. The meta-EA uses an evaluation function based directly

on the evaluation of the EA it is attached to for measuring effectiveness. For the efficiency

measure the evaluation is calculated based on the number of evaluations the sublevel EA

performs.

Since the meta-EA has two objectives to evaluate, those of effectiveness and of ef-

ficiency, a Pareto front analysis is employed. With this approach we can evaluate the

tradeoff ourselves as to what what of the two objectives is the more important a posteriori

to the execution of the algorithm.
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4.4 Summary

The design discussed here begins to achieve the goals and objectives. The first

goal is achieved with choices as indicated in Section 4.1. The second goal is met by the

development of the allocation algorithm system in Sections 4.1 and 4.3. The third goal is

addressed by the algorithmic comparisons of the intended allocation EA system with other

available algorithms. The latter two goals are also addressed by the two coevolutionary

algorithms discussed in Section 4.3.

Both coevolutionary algorithms tune and adapt the allocation EA so that it is as ef-

fective as possible when introduced to a real world environment. The representation of the

system hardware allows for easy conversion from the development and testing arena to an

actual working system, allowing flexibility in the EA for evolving solutions. Through train-

ing on the competitive EA and tuning with the meta-EA, the allocation EA is developed

as robust software. However, the actual choices for EAs and operators to be implemented

are crucial to successful development. The incorporation of these details into the overall

algorithm is the subject of the next chapter.
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V. Low Level Design and Algorithm Implementation

The primary focus of this research investigation is in the design and development of an

effective and efficient allocation EA. Two other coevolutionary EAs are interfaced to the

allocation EA to aid in its evolution and development. This chapter details the design of

each of these three algorithms. Also discussed are the different EAs: the allocation EA

(Section 5.2), the competitive coevolutionary EA (Section 5.3), and the meta-EA (Sec-

tion 5.4). Each of these discussions continues the initial design presented in Section 4.3.

An explanation on how each algorithm contributes is given in Section 5.5, and an imple-

mentation description given in Section 5.5.

5.1 GENOCOP III

The algorithm that is implemented for the different EA’s is a highly modified version

of Michaelewicz’s GENOCOP III program [50]. GENOCOP stands for GEnetic algorithm

for Numerical Optimization for COnstrained Problems[51]. It is a real-value genetic al-

gorithm that has proven itself successful at finding near optimal solutions in a variety

of problem domains [76]. The original idea behind the first version of GENOCOP was

to have a general and problem independent genetic algorithm that could handle different

constraints. This algorithm has since been expanded to GENOCOP III.

GENOCOP III took the ideas of it’s predecessors and incorporated an additional

population that allows it to search outside of the feasible region for near optimal points.

Thus it has two populations Psearch and Preference. The search population Psearch consists

of all points that satisfy the linear constraints of the problem. This population is identical

to the population of the original GENOCOP version. The second population, Preference,

contains only those points, taken from the search population, that satisfy all constraints

(linear and non-linear). Also, for ensuring that the search population does not stray too

far from the feasible areas a repair function is implemented that evaluates the search

population member based on some point chosen by the linear intersection between the

search member and a random reference member. With some probability the search member

then moves towards the feasible region. In this manner the GENOCOP III system can
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search feasible and nonfeasible areas alike, but constrains the possible solutions as being

those points that are fully feasible.

The results found by using GENOCOP III have validated its effectiveness for a variety

of single objective experiments [76, 50, 51]. For our uses GENOCOP III has been modified

in a number of different ways. First, functionality is introduced for dealing with Pareto

optimization for multiobjective optimizations. It is also modified so that it has the capacity

for self procreation, whereby it could call itself for meta-evolutionary optimizations. In

this way the algorithm is able to improve the sublevel execution’s parameters to some

respectable level.

We also implemented a parallelization of the algorithm. An island model approach

is selected whereby multiple demes of both reference and search populations are executed

in parallel. Communication between the demes occurs with feasible members with the

best evaluation of the population transferred amongst the neighboring populations. This

transfer of individual solutions promotes the diversity of the different demes.

GENOCOP III pseudocode. Expanding on Merkle’s algorithm for evolutionary al-

gorithms, as given in Section 3.5 we can describe the generic GENOCOP III system in

Figure 5.1. This algorithm makes some modifications to Merkle’s original notation based

on it’s inability to define the specifics of the GENOCOP III system. First off, as Merkle

noted, neither his nor Bäck’s definitions take into account algorithms which terminate

based on a predefined amount of evaluations being reached. Second, because of the man-

ner that the GENOCOP III system is designed, we need to introduce the search population

with feasibility operators that are employed.

In this algorithm, other than explicitly declaring the different operators for the ref-

erence and search populations, the only real modifications made are that we have added

tmax to represent the maximum number of evaluations to be performed and tref represents

the amount of evaluations to evolve the search population prior to optimizing the reference

population.

It should be noted that since real-valued alleles are being employed, the evolution

operator no longer uses both recombination and mutation, rather it selects from the ten
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t := 0;
initialize Pref (0) := {~a1(0), . . . ,~aµref

(0)} ∈ Iµref

initialize Psch(0) := {~a1(0), . . . ,~aµsch
(0)} ∈ Iµsch

evaluate Pref (0) := {Φref (~a1(0)), . . . ,Φref (~aµ(0))}
evaluate Psch(0) := {Φsch(~a1(0)), . . . ,Φref (~aµ(0))}
while (ι(t 6= tmax) do

· select : Psch(t) := s
(t−1)

(θ
(t−1)
s )

((P )sch(t) ∪ Psch(t− 1), Pref (t− 1));

· modify : ~P ′sch(t) := r
(t)

Θ
(t)
r

(Psch(t)) ∨ Psch(t) := m
(t)

Θ
(t)
m

(P ′sch(t));

· evaluate : P ′sch(t) := Φ(P ′sch(t), Pref (t));
· if (tmodtref = 0)then

· modify : P ′ref == m
(t)

Θ
(t)
m

(P ′ref (t)) ∨ P ′ref (t) := r
(t)

Θ
(t)
r

(Pref (t));

· select : Pref (t) := s
(t−1)

(θ
(t−1)
s ,Φref )

((P )′ref (t− 1) ∪ Pref (t− 1));

· fi
· t := t+ 1;
od

Figure 5.1 GENOCOP III algorithm

modification operators that are available to it, and from this set selects only one to modify

the chromosome. These operators include both recombination and mutation operators

specifically designed for execution on real-valued chromosomes.

Of special interest is the evaluation of the search population[52]. The selection of

the the search population is different from a normal selection in that the GENOCOP

selection process evaluates the search population members based on their proximity to

feasible solutions already found. If a member of the search population is infeasible, then

the nearest member in the reference population is selected and the evaluation of that

search population member is set to the selected reference populations evaluation. With this

approach the search population is allowed to explore infeasible regions yet still evaluate it’s

population members. It is this evaluation that allows the GENOCOP III implementation

to fix previously infeasible solutions so that they are within the feasible region of the search

space. The algorithm for this function is given in Figure 5.2 where F represents the feasible

region of the search space, and pr represents the probability of replacement of the search

chromosomes in the search population by the feasible chromosome z, where z is created

by a linear combination between the feasible point r and the search point s.
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∀s ∈ Psch(t) do
if s ∈ F thenΦsch(s) = Φref (s)
else{
· r −→ Pref (r) for some r ∈ Pref
· z −→ as+ (1− a)r ∈ F
· Φsch(s) −→ Φref (z)
· if(Φref (r) > Φref (z)) then
· Pref (r) −→ z
· Psch(s) −→ z|pr > rand(0, 1)
· fi
}
fi
od

Figure 5.2 GENOCOP III search population algorithm

The overall GENOCOP III algorithm uses a µ+1 selection, with the same operators

being used for both populations given a population size of µ. At every tref evaluations of

the search population, the members of the reference population are evolved such that if a

search population member is feasible it is included into the reference population.

The GENOCOP III complexity is directly proportional to the number of evaluations

that must be performed. Thus the algorithmic complexity for a standard EA system is

O(tmax) where tmax represents the amount of evaluations performed by the algorithm.

For the GENOCOP III system, since it uses two populations that each must be evaluated

the worst case scenario would involve a cost of t2max when the period of evolution of the

reference population is equal to one and both the reference and search populations evolve

for tmax evaluations.

5.2 Allocation EA

The primary EA that this research effort focuses on is the allocation EA. This EA

uses a specific evaluation function that allows it to search the potential solution space for

a solution. Because of the variety of factors involved with this real world problem, setting

up this EA is no trivial task. As shown in Figure 5.3, the reason the other two EA’s exist

is for tuning and evaluating the effectiveness and efficiency of the allocation EA.
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Figure 5.3 The overall EA system. Note how the two coevolutionary EA’s work for
improving the results of the allocation EA.

The input for this algorithm consists of the original state of the machine So, the

relative performance characteristics of the processors % and communication links l, as well

as the task list for the next state of the machine T . With this data the algorithm computes

a next state of the system Sn such that the organization of processes to processors is an

effective mapping.

We define p to be the number of processors and m to be the number of tasks that

are being examined for each run of the allocation EA. Since it is possible that not all

processes are assigned a processor, we further define n to be the number of processes being

examined by the specific potential solution being examined, n ≤ m. Thus Pj , j ∈ {1 . . . p}
and Ni, i ∈ {1 . . . n} represent the specific processors and tasks respectively. A state, S, is

then defined as a mapping of processors to processes such that Sk(Ni) is equal to the set

of all processors used by task Ni at time k. For the purposes of this algorithm we need

only examine two time steps, the original time k = t − 1 and the time occurring for the

new state of the system k = t.

For the request list we define Requested(i) to be the number of processors requested

by task i ∈ {1..n}. Required(i) likewise represents the number of processors required by

process i. The difference between these two is substantial, as the task i must have at

least the amount of processors as given by Required(i) but should not have more than

Requested(i). Also, based on the task list we also must note whether a task can be pre-
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empted or not (ie can be moved between processors). Preempt(i) is given by Equation 5.1.

Preempt(i) =







0 if i preemptible

1 if i not preemptible
i ∈ {1 . . . n} (5.1)

The mapping function η(Pj) is defined such that it results in the identifier i of the

task that is assigned to processor Pj , j ∈ {1 . . . p}, i ∈ {1 . . . N}. If η(Pj) results in 0 then

processor j is not assigned a process.

Set of Candidate Solutions. At each generation of the allocation EA a new set of

potential next state solutions are generated. The collection of these potential solutions is

the EA population. Each member of the population thus consists of an allocation scheme

for mapping the processes to the processors for the next-state of the distributed system.

If we let x represent one possible solution chromosome of the EA population then its form

would be x = x1, x2, x3, . . . , xp. Where each xi would represent the process that is allocated

to processor i.

Next-State Generator. The generation of next state candidates is done using the evo-

lutionary operators that are embedded in GENOCOP III. Being an evolutionary algorithm

it uses the genetic operators of recombination and mutation for next state generation of the

population. The difference between GENOCOP and some other EA is that GENOCOP

does not constrain itself to using just one operator. It uses a probability distribution to

choose at for each population member what type of operator is to be used, a selection from

ten potential operators that are encoded specifically for dealing with real-valued search

domains. These ten operators with their associated amount of parents and children are

listed in Table 5.1.

Uniform mutation is a basic single parent, single offspring mutation where the parent

undergoes random genetic changes to one or more of its alleles. Mathematically speaking,

given a parent x such that x = (x1, x2, x3, . . . xq), we generate x′ = (x1, . . . , x
′
k, . . . , xq)

where k ∈ (1, . . . , q) is chosen randomly and xk is mutated to some uniform random value

constrained within the domain of xk[51]. This creates the random diversity that allows
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Operator Number of Parents Number of Offspring

uniform mutation 1 1

boundary mutation 1 1

non-uniform mutation 1 1

whole non-uniform mutation 1 1

arithmetical crossover 2 1

simple arithmetical crossover 2 1

heuristic crossover 2 0,1

gaussian mutation 1 1

pool crossover n 1

scatter crossover n 1

Table 5.1 GENOCOP III operators with the corresponding parents required and off-
spring produced

the EA to search the entire search space. The boundary mutation operator works in the

same way with the exception that xk is constrained to being set to the constraints of its

domain, ie. xk = max(domain(xk)) ∨min(domain(xk)). This forces the chromosome to

explore the outer areas of its domain for possible good solutions.

Non-uniform mutation moves the selected allelle (xk) some distance 4(t, y) from

itself. This distance decreases with time of the evolution, thus moving the search from a

wide spread examination to a more local search as time progresses for the system. The

whole non-uniform mutation works by changing the entire allele, xk, ∀k = (1, . . . , q).

Gaussian mutation also varies its search area with time, it’s modification though is created

as a result of gaussian noise.

Arithmetical crossover works by selecting two parents, x1 and x2, from the popula-

tion. Then using a linear combination of the two parents as in x′2 = a ∗ x2 + (1 − a) ∗ x1
where a is a random number a ∈ [0 . . . 1], creates a child. Arithmetical crossover does

the linear combination across the entire chromosome, simple arithmetical crossover only

does the linear combination after some crossover point of the allele, the rest of the original

parent is passed directly to the child.

Heuristic crossover uses the objective function to determine a direction of search,

it chooses two parents and then moves the parent with the lower objective value in the

direction of the parent with the higher objective value. By working in this manner, this
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algorithm provides some small scale local search capability[51]. Pool crossover collects a

set of parents and mixes and matches their alleles to create a new child. Scatter also uses

a set of parents but this time it finds the central vector of the parents, it then does a

heuristic crossover operation between this central vector and the worst vector of the set,

returning the results as the child.

Selection. The selection function for both the search and reference population uses

a µ+1 approach for selecting the members of the next generation of the population. They

both use an elitist method for selecting which members of each population are to survive to

the next generation. Each time a new member is created for each population the member

is evaluated and then added into the population, the member of the population with the

lowest evaluation result is then removed from the population.

Feasibility. There are three feasibility functions that must be enforced in order to

ensure viable solutions for this algorithm. Because of the way that GENOCOP works

the solution space is constrained by these functions, but the search space does not neces-

sarily have to be. GENOCOP III allows the search to progress outside the bounds of the

constraints using a specific search population, at certain instances of the execution the pro-

gram polls this search population and moves feasible solutions to a reference population.

The final solutions are then selected only from the reference population.

The first constraint that is imposed on the solution set is a domain constraint. This

type of constraint is imposed throughout the algorithm, thus limiting the amount of search

space examined. Since each solution consists of a mapping of only N processes to the P

processors for state Sn, we must constrain η(Pj) so that it does not move beyond the

available processes as described in Equation 5.2.

0 ≤ η(Pj) ≤M ∀j ∈ {1 . . . P} (5.2)

Since some processes require some upper and lower limits on the amount of processors

that they can/must support we further define the linear constraints binding them to these

limits. As explained above, Required(i) and Requested(i) define the amount of processors
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that process i must have to execute and would prefer to execute respectively. Thus to

bound the amount of processors that can be used we must ensure that no more than

Requested(i) are used, and that no less than Required(i) are used.

Required(i) ≤| Sn(Ni) |≤ Requested(i) ∀i ∈ {1 . . . n} (5.3)

The final constraint that must be enforced is based on ensuring that those processes

that cannot be preempted (preempt(i) = 0) are not preempted in the next state of the

system. Due to the way we set up the Preempt evaluation function (see Equation 5.1) we

can use a constraint as given in Equation 5.4.

n
∑

i=1

preempt(i) ∗
(

So(i)− Sn(i)
)

= 0 (5.4)

GENOCOP III’s approach to handling feasibility problems is based on using a repair

mechanism. The search population is allowed to explore the search space, within the

bounds of the domain constraints, without dealing with the non-linear constraints. The

reference population is kept as those solutions that meet these constraints as well. Thus

using the crossover operators as explained above the algorithm allows for exploration of

the search space outside of the constraints, but with the idea that those extraneous points

could be moved closer to the points within the feasible region through the use of a repair

mechanism. This repair mechanism chooses both a reference and a search point and creates

a line between the two. The reference point then is set to some random point along that

intersecting line. Thus moving it closer to the feasible region.

Solution. Since the GENOCOP III implementation works by storing the best solu-

tion to date from all of the potential populations, this becomes the solution result when

we are using a single objective function. This solution is selected by comparing each of the

generated population members at each of the generations to the known best solution up to

that generation. If the compared solution is better than the one stored as best then that

allele is stored as the current best solution. Since GENOCOP uses a number of generations
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for calculating its results, once the a priori chosen number of generations are met then the

algorithm stops, returning the best found solution.

Objectives. For the allocation EA their are six overall objectives that were decided on

as being important for adding to the overall cost function. First off, this is a minimization

problem, the objective is to have the least total cost in terms of the overall system. How

we measure this total cost is based on the six overall objectives of: request cost (Crequest),

preemption cost (Cpreempt), processor distribution cost (Cdist), communication linkage cost

(Clink), and rollover cost (Crollover). By examining all of these we are able to put together a

cohesive objective value that represents the overall state of the system. Because of the fact

that GENOCOP III is a real-valued EA and the resulting choices are supposed to be integer

solutions, for the obvious reason that you would not have a fractional computing system,

we first truncate all of the chromosome elements (alleles) so that they can easily represent

each computer system. This is not a problem because of the fact that we constrained

the domain of the alleles to be between 0 and n + 1, therefore our possible solutions are

constrained appropriately.

The first objective that is to be dealt with is the request cost, Crequest. Each process

has some upper and lower limit on the number of processors that it can support and

that it needs to operate respectively. While these upper and lower limits create bounded

constraints on the amount of processors allocated to the process as shown in Equation 5.3

this constraint does not allow for any advantage for the process for using any more than

the lower bound of processors. Thus the request cost objective exists in order to try to

provide some benefit for using more than the lower bound of processors. For any given

process the amount of extra processors used is found using Equation 5.5.

Crequesti =| Sn(Ni) | −Required(i) (5.5)

For the cost of preemption, Cpreempt we want to minimize the overall cost of pre-

empting a process. There are two manners of preemption examined in this work: the true

preemption, that which occurs when a process is stopped so another process can use that

processor, and the preemption that occurs when a process is moved to a different processor.
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Since not all processes can be preempted the feasibility of a solution based on it’s being

preemptive or not is dealt with in the feasibility section. For those processes that can be

preempted we decided to examine the two types of preemption from the perspective of

new processors added to a preexisting processor, and old processors being removed from

a preexisting process. In this manner we can examine not only the preempted processors,

but also include in it any additional cost that occurs from adding extra processors to an

already ongoing process.

For the first type of preemption, that where processes are added to a preexisting

processor, we use the cost function as given by equation 5.6.

Cpreempt+i
=| Sn(Ni)− So(Ni) | (5.6)

What this equation does is give us the amount of processors that exists in the potential

next-state of the system that did not exist in the old-state of the system for the preemptible

process i. Using the same logic Equation 5.7 returns the amount of processors that existed

in the old-state of the system that are not present in the potential next-state of the system

for process i. In other words they determine the amount of processors given to and removed

from task i respectively.

Cpreempt−i
=| So(Ni)− Sn(Ni) | (5.7)

The distribution cost of the processors, Cdist is a measure of the relative processing

capability of each process’s collection of processors. This is done by finding the sum squared

difference of the processor group for each process as shown in Equation 5.8.

Cdisti =

|Sn(Ni)|
∑

j=1

(

%(Sn(Ni)j)−
∑|Sn(Ni)|

k=1 %(Sn(Ni)k)

| Sn(Ni) |

)2

(5.8)

where, %(Sn(Ni)j) is the normalized processing capability of processor j of the set proces-

sors corresponding to the set of processes of task Ni. Hence, using this equation, we can

find, for each process, the sum squared difference between processor capability. Because

it is a squared difference we are able to extenuate those processes that have an uneven

distribution of processors.
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The link cost, Clink is a measure of the overall communication overhead experienced

by each process. By using a normalized communication matrix, calculated a priori to the

EA execution, we are able to take into account all communication costs that would be

associated due to the relative node speeds, the backplane structure, etc. Thus for each

process we would calculate

Clinki
=

(|Sn(Ni)|−1)
∑

j=1

(|Sn(Ni)|)
∑

k=j

l(Sn(Ni))jk (5.9)

as the summation of all possible communication occurrences that could occur for process

i.

The final cost chosen for examination is that of the rollover cost Crollover. This is

the cost associated with not including available processes for execution in the next-state

of the system. We find the amount of rolled-over processes using Equation 5.10. This is a

critical element of the algorithm in that we want to ensure that as few processes are not

executed as can be contained within the constraints as explained in Section 5.2

Crollover = m− n (5.10)

Now that we have identified the objectives that are incorporated into the system we

must adapt them so that they can be reasonably compared with each other. As can be

seen by Table 5.2 the domains are are too diversified to be able to be used directly in the

objective function. Also, most of the objectives only take into account a single process and

its relative configuration. Thus in order to find a unifying objective function we have to

expand our cost functions to be able to incorporate the entire system.

As before we begin with the request cost. In order to have the equation take into

account all of the different sets of processors we sum Equation 5.5 for all n. Then to nor-

malize this equation we divide by the total amount of processors that have been allocated,
∑nn

i=1 | Sn(Ni) |. This provides us with a result equivalent to the percentage of processors

that this potential solution has that are over the required amount. This function, as shown
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Cost Function Range

Crequesti =| Sn(Ni) | −Required(i) 0 . . .
(

Request(i)−Required(i)
)

Cpreempt+i
=| Sn(Ni)− So(Ni) | 0 . . . Request(i)

Cpreempt−i
=| So(Ni)− Sn(Ni) | 0 . . . Request(i)

Cdisti =
∑|Sn(Ni)|

j=1

(

%(Sn(Ni)j)−
∑|Sn(Ni)|

k=1 %(Sn(Ni)k)

|Sn(Ni)|

)2

0 . . . 1

Clinki
=
∑|Sn(Ni)|−1

j=1

∑|Sn(Ni)|l(Sn(Ni))jk

k=j 0 . . . p(p−1)2

Crollover = m− n 0 . . .m

Table 5.2 Original cost functions for the allocation EA objective along with their re-
spective ranges.

in Equation 5.11, we want to maximize so that we can obtain all possible benefits of using

the extra available processors.

Crequest =

∑nn

i=1(| Sn(Ni) | −Required(i))
∑nn

i=1 | Sn(Ni) |
(5.11)

The equations for preemption (Equation 5.7 and 5.6) not only need to be normalized

and spread across all sets of processes, but they also need to be combined so that they can

be compared directly with one another. Once again, in order to spread them across all

tasks they are simply summed for all tasks. For normalization they are divided by the total

amount of processors allocated in the original state, for Cpreempt−, and in the new state for

Cpreempt+. They are divided so that they measure the percentage difference between the

relative states. For Cpreempt− we must divide by the amount of processors used in the old

state because we are measuring (with Equation 5.7) the amount of processors in the old

state that do not exist anymore in the new state. The opposite is true of Cpreempt+, here

we are measuring the amount of processors that exist in the new state that did not exist in

the old state. What is especially important to note is that both of these summations are

summed over the original set plus one. This is necessary because we only want to include

those processes that existed in the original state, the additional one ensures that the result

does not return an impossible value. This gives us the Equations 5.12 and 5.13

Cpreempt+ =

∑no

i=1 | Sn(Ni)− So(Ni)

1 +
∑no

i=1 | Sn(Ni) |
(5.12)
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Cpreempt− =

∑no

i=1 | So(Ni)− Sn(Ni)

1 +
∑no

i=1 | Sn(Ni) |
(5.13)

Now when combining these two objectives we have to understand that they are op-

posing objectives. In other words we want to maximize Cpreempt+ and minimize Cpreempt−.

Also, we must ensure that the objective value of adding new processors to the current

state (Cpreempt+) is not nearly good enough to cover removing processors from the original

state (Cpreempt−). This is because of the overhead cost that either adding or removing

processors to a currently executing process would incur. By adding new processors we

ensure that executing program have to send out the appropriate commands, communicate

whatever variables might be present, as well as potentially having to redistribute itself.

While this is all detrimental to the run time, overall the addition of an extra processor

should be able to benefit the executing task (assuming of course appropriate distributed

system utilization in the process). On the other hand Cpreempt− forces the processor to do

all the redistribution of load, but does not have the benefit of allowing for extra processor

utilization. Thus Cpreempt− must be weighted more than Cpreempt+. We arbitrarily chose

1
10 for a weight to distinguish between the two, giving us the equation:

Cpreempt = Cpreempt− −
1

10
Cpreempt+ (5.14)

The distribution of processing power equation Cdist is already normalized, giving

results between 0 and 1 inclusive. Equation 5.8 does not, however, calculate the total

combined power distribution of the entire graph, only of the single task i. Using the

equation for a statistical mean though fixes this nicely as shown in Equation 5.15.

Cdist =

∑nn

i=1

(

∑|Sn(Ni)|
j=1

(

%(Sn(Ni)j)−
∑|Sn(Ni)|

k=1 %(Sn(Ni)k)

|Sn(Ni)|

)2
)

nn
(5.15)

The total normalized link cost can be done in the same manner, this time dividing

by the total processing capability of the distributed system. This gives us the percentage

of communication utilized by the system. Since the linkage graph is constructed of relative

link statistics, where one represents that link being able to transmit with no relative error
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and zero means that the communication link has no relative communication ability, this

equation would provide us with a statistic that increases with positive system performance.

Because we are moving towards a minimization function, we subtract this percentage from

one to have it influence the system in the manner we desire.

Clink = 1−
(

∑nn

i=1

(

∑(|Sn(Ni)|−1)
j=1

∑(|Sn(Ni)|)
k=j l(Sn(Ni))jk

)

∑p−1
j=1

∑P
k=j l(Sn)jk

)

(5.16)

Then finally the Crollover equation can be normalized by simply dividing it by the

total number of processes in the request list, m as in Equation 5.17.

Crollover =
m− n
m

(5.17)

Thus we can now put the overall objective equation together as a summation of the

various constituents. Since they are now normalized we can combine them in an aggregate

form with some weights to take into account the differing degrees of importance they are

towards each other. Using α1 . . . α5 for the weights then gives us the aggregate objective

as shown by Equation 5.18.

min
(

α1Crequest + α2 ∗ Cpreempt + α3 ∗ Cdist + α4 ∗ Clink + α5 ∗ Crollover
)

(5.18)

Of these objectives the only one that immediately stands out as needing some priority

is the cost of rollover, Crollover. We of course want to try to execute as many tasks as we

can if it is at all possible. The other objectives are related to the system performance and,

while important, are not nearly as much so as that of the rollover cost. Thus we set the

coefficient for Crollover to ten, and all of the other coefficients to one, making it one order

of magnitude larger than the others objective coefficients. The overall objective functions,

normalized so they are comparable, are given in Table 5.3.
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Crequest =
∑nn

i=1(|Sn(Ni)|−Required(i))
∑nn

i=1|Sn(Ni)|

Cpreempt+ =
∑no

i=1|Sn(Ni)−So(Ni)

1+
∑no

i=1|Sn(Ni)|

Cpreempt− =
∑no

i=1|So(Ni)−Sn(Ni)

1+
∑no

i=1|Sn(Ni)|

Cdist =

∑nn
i=1

(

∑|Sn(Ni)|
j=1

(

%(Sn(Ni)j)−

∑|Sn(Ni)|
k=1

%(Sn(Ni)k)

|Sn(Ni)|

)2
)

nn

Clink = 1−
(

∑nn
i=1

(

∑(|Sn(Ni)|−1)
j=1

∑(|Sn(Ni)|)

k=j
(Sn(Ni))jk

)

∑p−1
j=1

∑P
k=j l(Sn)jk

)

Crollover =
m−n
m

Table 5.3 Standardized objective functions for the allocation EA

5.3 Competitive EA

The competitive EA is responsible for creating a set of jobs that the allocation EA

can process. By evolving its set of requested tasks as time continues it is the goal of

this EA to generate schedules that the allocation EA would have difficulty handling. In

this manner the allocation EA can be be modified to surmount these vulnerabilities either

implicitly with the meta-EA, or explicitly through reexamination of the composition of the

allocation EA. In accordance with the biological definitions of coevolutionary organisms,

this algorithm works in an amensal relationship. This algorithms entire purpose is to create

hard schedule requests for the allocation EA, thus its objective function is inversely related

to that of the allocation EAs solution. It should be noted that since this is a dependent EA,

every time an objective function needs to be calculated a full execution of the allocation

EA must be made.
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Set of Candidate Solutions. The population of this EA consists of test states with

request lists. Each chromosome is itself a state and a request list. The original state is rep-

resented in the same manner that the allocation EA represented it: x = x1, x2, x3, . . . , xp.

Where each xi ∈ Z+ represents the process that is allocated to processor i. We must also

add on the request list information concerning whether each process is preemptible, the

amount of processors required, and the amount of processors requested for each process.

We constrain the number of processes allowed to be executed to some number u. Thus

we append onto the end of the x chromosome (r−1 , r
−
2 , . . . , r

−
u , r

+
1 , r

+
2 , . . . , r

+
u , p1, p2, . . . , pu)

where r−i represents the amount of processors required by process i, r+i the amount of pro-

cessors requested by processor i, and pi being whether processor i is preemptible or not.

Thus for the schedule the processors requested for processor i would be the truncation of

r−i , and the processors required would be the truncation of r+i as shown in Equations 5.19

and 5.20.

Required(i) = br−i c (5.19)

Requested(i) = br+i c (5.20)

Whether or not process i is preemptible is dependent on pi is given by Equation 5.21.

preempt(i) = 0 if pi < 0.5 else 1 (5.21)

Next-State Generator. The next state of the competitive populations are produced

through the use of GENOCOP III, using the same operators as those used by the allocation

EA and explained in Section 5.2. The generator creates solutions that are viable states

with correspondingly viable request lists. The amount of processes in the state does not

necessarily have to correspond with the amount of processors in the request list so that

the allocation EA can attempt to add new processes to the state.

Selection. Since, like the allocation EA, the competitive EA uses GENOCOP III,

the selection operator is equivalent for the potential solutions. Each of the chromosomes

for this EA are weighted in proportion to their ability to maximize the objective calculated

by the allocation EA based on the schedule that each chromosome represents.
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Feasibility. The feasibility of this algorithm is dependent on its own constitution.

The domain of each of xi, ∀i ∈ 1 . . . p must be between 0 and u + 1. This is needed so

that the algorithm does not produce an allocation with nonexistent processes. Along with

that, r−i and r+i must be bounded between the constraints of [1, u+1] so that they do not

ask for more processors than exist, nor less than a single processor. pi must be bounded

between [0, 1] inclusive so that it can be uniformly distributed as to whether the process

is to be preemptible.

For the non-domain constraints, the algorithm must ensure that the states it is

sending are valid. First off, if a process is in the schedule, ie for some process k, ∃xi = k,

then that process must have greater than or equal to the amount of processors it claims

to require, | S(Nk) |≥ Required(k). Also, it must have less than the amount of processes

that it requested | S(Nk) |≤ Requested(k).

Solution. A unique solution for the competitive EA is never actually found, instead

this algorithm provides a request strategy that can be used for more detailed allocation

algorithm tuning. The competitive EA runs for its specified amount of generations, at-

tacking at the objective function of the allocation EA and thus trying to help the meta-EA

optimize the allocation EA’s parameters. The only potential solution that this EA can

generate is a strategy (some chromosome) that always causes the allocation EA to have

a poor evaluation. The occurrence of this type of strategy would mean that some type

of explicit modifications to the allocation EA are necessary in order to prevent further

occurrences from happening.

Objective. The objective function of the EA is directly dependent and inversely pro-

portional to the allocation EA’s objective function. The overall goal of this research effort

is to make the allocation EA as effective and efficient as possible. Thus, since the coevolu-

tionary algorithm works as a protagonist to the allocation algorithm it wants to maximize

the overall objective value calculated for the allocation EA’s best found solution (which

again is a minimization problem). It also wants to make sure that the allocation EA has

the largest running time as possible, thus it wants to maximize the number of generations

that the allocation EA has.

5-18



Because the competitive EA has no control over the amount of generations that the

allocation EA runs, it is unnecessary for its objective function to take this into account.

That is saved for the meta-EA, as it does have control over this value. We do however

consider the objective function resulting from the allocation EA as a value for the coevo-

lutionary EA’s objective function evaluation. The objective value for the allocation EA is

defined in Equation 5.18. Using this equation we can define the allocation EA objective

as in Equation 5.22.

max(min
(

α1Crequest + α2 ∗ Cpreempt + α3 ∗ Cdist + α4 ∗ Clink + α5 ∗ Crollover
)

) (5.22)

5.4 Meta EA

As opposed to the competitive EA, the meta-EA has a commensal relationship with

the allocation EA. It’s objective value is directly proportional to that of the allocation

EA’s. In this manner the meta-EA’s objective evaluation improves as it is able to improve

the results from the allocation EA. The meta-EA works in the same manner as the other

evolutionary algorithms, the only difference being that it’s chromosomes determine the pa-

rameters used by the allocation EA. By doing this the algorithm evolves sets of parameters

that are optimal for the allocation EA With these parameters the meta EA fine tunes the

allocation EA so that it is able to more effectively and efficiently find solutions to whatever

allocation request is given to it.

Set of Candidate Solutions. The set of candidate solutions are the parameters nec-

essary to evolve the next execution of the allocation EA. Because, for this algorithm,

GENOCOP III is used these parameters are based directly off the input required to exe-

cute one iteration of the GENOCOP III system.

Since GENOCOP is designed as an easily configurable system the basic parameters

are inputted via an input file. The available parameters and their associated representa-

tions are listed in Table 5.4. With the exception of the number of objectives, all of these

fields are directly from the original GENOCOP III system.
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Parameter Type

Number of Objectives int
Number of Variables int
Number of Non-Linear Equalities int
Number of Non-Linear Inequalities int
Number of Linear Constraints int
Number of Domain Constraints int
Reference Population Size int
Search Population Size int
Number of Operators int
Total Number of Evaluations int
Reference Population Evolution Period int
Number of Offspring for Ref. Population int
Selection of Ref point for repair int
Selection of Repair Method for Search Pop int
Search Point Replacement Ratio float
Reference Point Initialization Method int
Search Point Initialization Method int
Objective Function Type int
Precision Factor float
Random Number Seed 1 int
Random Number Seed 2 int
Freq Distribution Control Mode int
Domain Constraints float
Frequency of Operators int

Table 5.4 GENOCOP III available parameters with type
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Clearly not all of these fields should be altered for experimentation, and those fields

that can be altered must be bounded so that infeasible executions are not allowed to occur.

Specifically, some of the fields are held constant due to their describing the allocation EA

algorithm’s functions rather than being parameters for dealing with the search direction.

The amount of variables, type of objective, and the constraint descriptions are all held

constant throughout each run for this reason. In fact only those elements listed in Table 5.5

are able to be modified by the meta EA.

Parameter Lower Bound Upper Bound

Reference Population Size 1 1000
Search Population Size 1 1000
Total Number of Evaluations 1 5000
Reference Population Evolution Period 1 2000
Number of Offspring for Ref. Population 1 1000
Selection of Ref point for repair 0 1
Selection of Repair Method for Search Pop 0 1
Search Point Replacement Ratio 0.0 1.0
Reference Point Initialization Method 0 1
Search Point Initialization Method 0 1
Frequency of Operators 0 100

Table 5.5 GENOCOP III available parameters and their limits for the meta-EA execu-
tion

Using the bounds as stated in Table 5.5 the meta EA creates the set of candidate

solutions by transforming these elements into a real-valued vector, which is used as the

chromosome for the meta-EA.

With these parameters being bounded as described in Table 5.5 we can find the

upper bound for the search space of the Meta algorithm. Using a floating point resolution

of 0.0001 we can define the search space to be the O(
∏

Range(i))∀i ∈ param where param

defines the set of parameters being evolved.

The search space for the allocation EA is no less trivial. Because the GENOCOP

system is a real-valued algorithm the search space includes all of the floating point value

embedded in each allele. Without regard to these alleles our search space is kp where k

again is the number of tasks being run on p processors.

5-21



Next-State Generator. The next-state generation of values for this algorithm are

done using the same operators as is described earlier in section 5.2.

Selection. Selection of each chromosome occurs in the same manner as that outlined

for any other use of the GENOCOP III evaluations.

Feasibility. Other than the bounds as given by Table 5.5, the meta-EA is only con-

strained such that the reference population evolution period cannot be greater than the

total number of evaluations. The domain constraints for this algorithm are selected based

on the the maximum and minimum values found during initial experimentation.

Solution. A solution of the Meta EA is selected based on how well the allocation EA

is able to perform its task. Thus the better each of the objectives are, the more likely that

set of parameters is going to be included in the solution set.

Since the meta-EA works in a Pareto multiobjective manner each potential solution

cannot be examined without respect to the other potential solutions in the population.

Only by examining itself against these other solutions can we measure whether or not this

solution is nondominated. Those solutions that are nondominated are selected as being

the final solutions of the algorithm.

Objective. There are two objectives that the meta-EA tries to accomplish. The first

objective deals with the effectiveness of the program that it is controlling. In this respect

the meta EA wants to minimize the objective solution produced by the aggregate allocation

EA. The second objective deals with the efficiency of the program it is controlling, for

this the meta-EA works to minimize the amount of calculations necessary to produce a

solution. Since the choice of which objective we want to use is dependent on requirements

of the system a Pareto multiobjective approach is used for this algorithm, as seen in

Equation 5.23. With this type of approach we can examine what the tradeoffs between the

efficiency and effectiveness of this algorithm are. Because the results are given in a Pareto

nondominated fashion, the decision makers, are able to choose the chromosome that most
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suits the research area for implementation of this algorithm.

PFknown = (min(AllocationObjective),min(AllocationComputations)) (5.23)

5.5 Combining Implementation

When in a real world application the allocation EA is expected to run as a standalone

algorithm. The meta-EA and the competitive EA are both tools designed to help improve

the allocation EA algorithm so that when it is put into the real world application it’s use

is as effective and efficient as possible. In this manner the allocation EA is designed as a

standalone algorithm that accepts for input the parameters that control its operators as

well as the request list inputted from the user via an external file that does not need to be

compiled into the algorithm itself. The meta-EA and the competitive EA work therefore to

generate these input files, the meta-EA the input file for the parameters of the allocation

EA, and the competitive EA creates the request list to be given to the allocation EA.

For each iteration of the allocation EA we are trying to find the best configuration

of processors that yields the minimum objective result as given from Equation 5.18. This

result is based off of the use of operators controlled by some set of parameters S against a

request list and previous state description R. In order to ensure that the parameters are

not evolved based on some stagnant request data, each run of the allocation EA is used

against a different R. This request list and previous state description is evolved using the

coevolutionary EA so that the allocation EA can be measured against a whole range of

potential user requests, as it would see in a real-world environment.

One approach for the overall execution of the entire allocation EA training algorithm

consists of an execution of the allocation EA once per solution generated by the coevolu-

tionary EA, and the coevolutionary EA executed once per chromosome of the meta-EA. In

this manner the results obtained by the meta-EA implicitly represent the allocation EA’s

ability to handle a spectrum of different request list possibilities.

If we allow tea to be the total amount of evaluations for the allocation EA, tem the

total amount of evaluation for the meta EA, and tec the total amount of evaluations for the

competitive EA. Then using the notation that Φa,m,c is the objective evaluation for the allo-
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cation EA, meta-EA, or competitive EA respectively as given by Equations 5.18, 5.23, 5.22,

then the total algorithm execution would be as given in Algorithm 5.4

for(i = 1 . . . tem)do
· Φm(~ai) = {minCoev − EA :
· for(j = 1 . . . tec)do
· Φc(~aj) = maxAlloc− EA :
· {for(k = 1 . . . tea)do
· Φa(~ak)
· od; }
· od; }
od;

Figure 5.4 Full coevolutionary execution approach.

Unfortunately this approach is too costly in terms of overall execution time. Because

of the triple loop the cost in terms of evaluations is O(tem ∗ tec ∗ tea). For execution of

either the competitive EA or the meta-EA the best case cost is at most tem ∗ tea and

tem ∗ tea respectively.

Thus a better approach to the meta-EA is to use a small set of competitive solutions

in order to evaluate the meta-EA chromosomes. By using this approach the meta-EA tests

directly its parameter control onto highly evolved problems. With this manner and as long

as the set of chromosomes is less than tec then the overall execution time substantially less

than the triple algorithm approach.

5.6 Meta-Level Parallelization

A parallelized EA has the advantage that it can search multiple points of the search

space simultaneously. By doing this the algorithm can search more areas of the search space

in less time than would otherwise be possible, thus increasing the speed of the algorithm.

Parallelization also has the advantage that by transferring potential solutions between

different parallel populations the algorithm can maintain a high degree of diversity, thus

decreasing the chances of premature convergence [69]. There exists a variety of parallel

implementations available for parallelizing EA’s, Appendix F provides a quick explanation

of the three basic approaches.
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When deciding which parallel methodology should be implemented on the GENO-

COP architecture we must examine both the network that it is to be run on as well as

the manner that the GENOCOP III system works. Between the three choices (micro-

grained, fine-grained, and coarse-grained) we can right away see the infeasibility of the

micro-grained approach. Since GENOCOP is a µ+ 1 system the evaluation of each chro-

mosome is done individually. Thus their is no large quantity of population members to

be evaluated in parallel. In fact, because of the way that the GENOCOP system is im-

plemented the selection occurs after each member is evaluated. Thus parallelization in

the micro-grained methodology would not give any speedup to the overall system since

the evaluation of each chromosome must be done in serial via the manner GENOCOP is

implemented.

Between fine-grained and coarse-grained implementations, since the topology that

this is intended to be run on is a mesh connection either approach would be relatively

easy to implement in that with either manner it is relatively simple to have each processor

communicate with those nearest it. As far as the fine-grained EA being composed of

only a single population, it can be shown that this type of system is equivalent to a

multi-population distributed EA and that only the method of communication is what

distinguishes the fine-grained approach from the coarse-grained approach [10]. Thus we

must decide upon which approach to select based solely on there relative advantages and

disadvantages of each approach and the manner for which the GENOCOP system is already

implemented.

Since GENOCOP is already implemented serially it is easy to convert it into a coarse-

grained model, with asynchronous communication amongst the populations. Due to the

proven effectiveness of this type of model for a variety of applications [10] we chose to

implement in this manner.

The parallelized GENOCOP III implementation is designed to explore the vast search

landscape of the parameters for a sub-level EA. The sub-level EA is used to generate an

allocation of processes to processors within a distributed system. This is a relatively fast

EA, and thus does not need to be parallelized. The meta-EA on the other hand can benefit

from the extra search capability that parallelization provides.
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As is shown in Table 5.1, the GENOCOP III system is a complex system, but in

accordance with Appendix F, EA’s are highly parallelizable. Our implementation of the

GENOCOP III system on a parallelized platform is algorithmically similar to Algorithm 5.1

only with the added refinements of communication of the best reference vector found

by each algorithm such that it can be incorporated into the search population of those

algorithms executing relatively near the communicating algorithm as shown in Figure 5.5.

t := 0;
initialize Pref (0) := {~a1(0), . . . ,~aµref

(0)} ∈ Iµref

initialize Psch(0) := {~a1(0), . . . ,~aµsch
(0)} ∈ Iµsch

evaluate Pref (0) := {Φref (~a1(0)), . . . ,Φref (~aµ(0))}
evaluate Psch(0) := {Φsch(~a1(0)), . . . ,Φref (~aµ(0))}
while (ι(t 6= tmax) do
· recieve : Psch −→ Psch ∪Π(i)

· select : Psch(t) := s
(t−1)

(θ
(t−1)
s )

((P )sch(t) ∪ Psch(t− 1), Pref (t− 1));

· modify : ~P ′sch(t) := r
(t)

Θ
(t)
r

(Psch(t)) ∨ Psch(t) := m
(t)

Θ
(t)
m

(P ′sch(t));

· evaluate : P ′sch(t) := Φ(P ′sch(t), Pref (t));
· if (tmodtref = 0)then

· modify : P ′ref == m
(t)

Θ
(t)
m

(P ′ref (t)) ∨ P ′ref (t) := r
(t)

Θ
(t)
r

(Pref (t));

· select : Pref (t) := s
(t−1)

(θ
(t−1)
s ,Φref )

((P )′ref (t− 1) ∪ Pref (t− 1));

· transmit : π(Pref (i))where i is a pareto nondominated vector ∈ Pref
· fi
· t := t+ 1;
od

Figure 5.5 GENOCOP III parallelized algorithm

In this algorithm π represents the transmission function whereby a single vector is

transmitted to the populations with a rank one above and below the population calling π.

Π represents the receiving function, whereby the search population receives a chromosome

transmitted from one of its regional neighbors and stores it to be used in its search popu-

lation. By storing in the search population the algorithm uses that new vector for moving

points that are potentially infeasible to what could be a feasible region. It also allows for

a larger use of the new chromosome for motivating the population to explore new areas of

the search space.
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The complexity of this algorithm is O(t2max) number of evaluations for a worst case

scenario where the reference population is enumerated at every iteration of the search

population. We must be most concerned about the evaluations as they are the typical

bottleneck in an evolutionary algorithm [52]. Analysis of the evaluation operator for this

algorithm is difficult because of the two separate evaluation operators being executed. For

this experiment the high level meta evaluation operator is based on the best results of an

allocation EA run.

Each meta-EA execution runs a full modified GENOCOP III execution of the al-

location EA for optimizing the objectives defined therein. Thus, since the allocation EA

has a worst case scenario of O(t2max(Allocation)), the meta-EA would then have a cost of

t2max(Meta) ∗5∗ t2max(Allocation) or t4max. Thus any manner we can reduce the amount of eval-

uations necessary for the algorithm would have a dramatic effect on the overall algorithm

performance.

Since, as for any algorithm, we want to reduce the possible search space of the

problem we use the bounds as stated in Table 5.5 to bound the execution of the allocation

EA and thus the chromosome values generated by the meta-EA. A fuller description of the

parallelization of the GENOCOP system is given in Appendix G.

5.7 Summary

This chapter covers the development of the allocation EA, the competitive EA, and

the meta-EA. Each algorithm is explained with respect to its set of candidate solutions,

selection operator, feasibility constraints, solution operator, and objective evaluations. The

implementation of the modified GENOCOP III algorithm is also covered with the benefits

it provides. With the overall algorithm developed so that it meets the requirements of the

problem domain, experimentation can progress for analysis of the effectiveness.
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VI. Design of Experiments

The first step to ensuring that the algorithmic approach developed here executes properly

for a real world system is to test the validity of its individual components. The test-

ing involves both the single objective and the multiobjective optimization routines of the

modified GENOCOP III system. Once it is determined that all of the algorithm imple-

mentations execute as desired, experiments can ensue that focus on the evolution and

improvement of the allocation EA.

The primary goal of the experiments is to test and adapt the allocation EA so that

it executes as effectively and efficiently as possible. To do this an examination of all of the

coevolutionary components must be performed so as to validate their support of allocation

EA. This done, the allocation EA itself can be run and optimized accordingly. It should

be noted that the allocation EA is designed to such that it executes with both efficiency

and effectiveness objectives, the supporting algorithms’ only objective is to execute for

effectiveness.

The first step is to validate the GENOCOP III’s code for effectiveness. As far as

the single objective validation is concerned, its effectiveness has previously been examined

by the system’s original designers [50]. Since this research investigation has modified the

originally single objective system to incorporate multiple objectives a validation that the

multiobjective additions execute appropriately must occur. Being that this analysis is the

foundation for the rest of the work done for this research investigation it is included in

Appendix E.

For all of this work standard statistical analysis equations of mean, median, max,

min, variance, and standard deviation are used. The student T-tests are also used in

order to compare the means of different results using the standard principles of statistical

hypothesis testing[53]. Other metrics used include spacing and ONVG for multiobjective

problem Pareto front comparisons, as explained in Appendix E. These metrics altogether

help us to examine the effectiveness and efficiency of the different algorithms being used.

While they are not the only metrics available for use in examining Pareto fronts, they

provide enough knowledge in order to understand the overall composition of the results.
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This is sufficient since we are not comparing these results against other Pareto fronts, but

rather are merely trying to understand the comparative objectives.

This chapter focuses on experiments for the development and improvement of the

allocation EA. The experiments for testing the allocation EA, competitive EA, and the

meta-EA are discussed in Section 6.1. The first algorithm that is examined is the compet-

itive EA in Section 6.2. The next section then progresses to the meta-EA for optimization

of the allocation EA parameters. Finally an examination for incorporating a local-search

heuristic into the allocation EA is done in Section 6.4.

6.1 Objective/ Feasibility Testing

Since the GENOCOP III system is being used for implementation, it is unnecessary

to revalidate the single objective algorithm on benchmark problems as this algorithm has

already been tested and validated on multiple applications [50]. It is however necessary to

ensure that whatever code added to the program works as intended. All of the different

implementations have both objective function evaluators and feasibility operators that are

developed for each of the algorithms. Each section of these operators must be tested in

order to ensure that the output from each objective/feasibility operation is correct.

The only metric needed for these experiments is the objective being examined. A

simple comparison of the objectives being produced as a result of each test case to the

expected result of these cases is done in order to validate that the objective calculations

work as intended. For constraint validation a test on the results of the constraint compu-

tation on the bounds of the constraint requires the same basic computation comparison as

presented for the objectives.

Allocation EA. The allocation algorithm has multiple objectives which each must be

tested to ensure that they are outputting valid results. Validation of the different objective

calculations entails generating test cases that can test the bounds of each of the objectives

then testing the feasible region to ensure that the results calculated are equivalent to what

is expected.
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Meta-EA. The objectives for the meta-EA are simple to calculate and validate. Since

the first objective is the same as that corresponding from the output of the allocation EA,

a simple examination comparing the objective result of the allocation EA and the result

stated by the meta-EA validates it’s accuracy. The second objective, being the length of

time that the allocation EA executed, is only slightly more computationally intensive. Since

the meta-EA controls the parameters being tuned, it calculates this efficiency objective by

simply examining the amount of evaluations that are done. As for the feasibility operator

for the meta-EA, since the only constraint is that the evolution period is less than the size

of the reference population it is easily validated by examination.

Competitive EA. As with the meta-EA’s first objective, the objective for the com-

petitive EA is determined via examination of the allocation EA’s solution. In order to

validate the constraints of this algorithm we generate test cases that are in the infeasible

region and ensure that the program appropriately repairs the solutions.

6.2 Coevolutionary Design of Experiments

Once the objective functions are validated so as they return appropriate results the

experimentation using the overall algorithms can be done. The first set of experiments

involve generating trials that can be used against the allocation EA. To do this, we use the

competitive EA. This algorithm’s objective is to generate difficult test problems for that

are to be used by the allocation algorithm. The reasoning behind these problems again

is to create a set of test cases for which the allocation EA can be run against that could

model real-world load-balancing scenario’s that other algorithms might have difficulties

solving (see Chapter 5.3).

Our first experiments then are to test the effectiveness of this algorithm. Thus, the

following hypothesis:

Hypothesis 1 The results generated by a competitive coevolutionary algorithm can provide

test cases that have more difficult solutions than those derived from a random generation.

H0 : µΦ(coev[1])..Φ(coev[m]) = µΦ(rand[1])..Φ(rand[m])
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Test Case Number Processors Number Processes
1 16 4
2 64 16
3 128 16

Table 6.1 Number of processors and processes for testing

H1 : µΦ(coev[1])..Φ(coev[m]) > µΦ(rand[1])..Φ(rand[m])

where geno[i] represents the solution found for the ith experiment with the coevolutionary

algorithm and rand[i] represents the ith random solution found for some m experiments.

The intent of this experiment is that with these ”harder” problems we can more effectively

tune the parameters of the allocation EA.

For this experiment we generate three test cases as given in Table 6.1. These test

cases were chosen because they provide three different sizes of problems for the allocation

EA to use. The 16 processor, 4 process problem is the easiest, and the 128 processor 16

process is the most complex with respect to the amount of processors/processes that is

examined by allocation EA. Due to the necessary generality of the program their is no

constraint to the size of the problem that can be generated by changing either the amount

of processors or the amount of processes (or both). The problems selected in Table 6.1

are chosen based on their varied combination of processor sizes based on real-world system

configurations with differing amounts of processes, this allows for a comparison on the

scalability of the algorithm. These values are indicative of configurations that would be

used for research environments similar to those listed in Appendix A.

As described in section 5.1, the GENOCOP III algorithm has an algorithmic com-

plexity of O(t2max). When doing a coevolutionary approach where for each evaluation a

full execution of a sub-level EA is performed, as done with both the competitive and meta-

EA’s, the algorithmic complexity moves to O(t4max). Because of this extended runtime

requirement each of these experiments is run 5 times and solutions are generated. These

solutions are each measured based on the allocation evaluation found for that solution.

The results of these evaluations are then compared statistically to equivalent executions

of a uniformly random problem generator. The statistical mean and variance is compared

using a student T-test to statistically compute the results of the hypothesis test as stated.
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Parameter Value

Reference Population Size 20
Search Population Size 20
Total Number of Evaluations 200
Reference Population Evolution Period 100
Number of Offspring for Ref. Population 20

Table 6.2 Coevolutionary EA parameters for execution

The focus for this algorithm is on effectiveness and not necessarily efficiency. For

this reason we can set the parameters of the competitive EA so that it effectively generates

results without too much regard for efficiency. For this algorithm we allow for self adap-

tation of the operators using the GENOCOP III’s built in adaptation control. Since the

goal is effectiveness the experiment does not need to be overly tuned, rather just executed

for results, thus the following parameters shown in Table 6.2 have been selected for this

algorithm. Our parameter selection is made based on initial experimentation with these

parameters.

Alternatively the parameters for this algorithm are able to be set to whatever can

generate results in a realistic time frame. Since the GENOCOP III reference population

is supposed to be background operator with only infrequent evolution periods we set that

parameter to half of the total number of evaluations. The population sizes and number of

offspring is then set to 10 percent of the overall number of evaluations. Experiments even

with this parameter settings can take extensive amounts of time, especially when dealing

with larger problem sizes.

6.3 Meta EA Design of Experiments

While the meta-EA controls the parameters of the allocation algorithm, it itself need

only to operate effectively. The overall execution time of the algorithm is important only

with respect to the amount of time available for experimentation. In this manner the overall

parameters must be constrained to some limiting factor based on the lack of infinite time

to run this algorithm. Thus the meta-EA itself is set to run using the parameters as given

by Table 6.3. These parameters were chosen for the same reasons as those selected for the

competitive algorithm with the exception of the increased amount of reference population
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Parameter Value

Reference Population Size 20
Search Population Size 20
Total Number of Evaluations 200
Reference Population Evolution Period 20
Number of Offspring for Ref. Population 20

Table 6.3 Meta EA parameters for execution

periods. This parameter is decreased so as to allow for migration between the parallel

populations (see Appendix G).

The goal of the meta-EA is to generate a set of parameters tuned for the allocation

EA in order to optimize its effectiveness and efficiency. This should help to optimize the

allocation EA so that it can run well over a variety of different potential inputs. In order

to ensure that the parameters are not being tuned for any specific problem we provide a

set of simulated load balancing challenges for which the evaluation of the allocation EA

can be measured against. Thus for every evaluation of the meta-EA’s chromosome the

objective evaluation is based on the allocation EA’s execution across test cases that range

in difficulty based on the amount of processors allocated a priori to the allocation EA’s

execution as well as the relative requests for processors by different processes. These test

cases however must be standardized across all of the different combinations of amounts of

processors and processes so that the results may be compared.

The optimal approach for developing the meta-EA parameters is simultaneously with

the competitive EA test case generation. Unfortunately, as described in Section 5.5, exe-

cuting both of these algorithms simultaneously is too cost prohibitive for these experiments.

Thus we must constrain ourselves to a standard set of problems from which the meta-EA

can compare the results of the different allocation EA runs. In this manner the following

test cases for execution by each allocation EA evaluation have been chosen:

• Empty original state- such that none of the processes have been allocated

• Missing one process- such that all but one process has been allocated

• Full state but one, with preemption- such that all of the processors but one have

been allocated with all of the processes
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There are two experiments that must be done using the meta-EA. The first tests the

ability of the meta-EA to provide effective and efficient parameters for the allocation EA

algorithm. The second test is to examine the ability of the meta-EA for generating a set

of results that is effective across a range of problem sizes. With these two tests we can

validate the effectiveness of the meta-EA and generate good experimental results that can

be used as parameters for the allocation EA.

Parameter Generation Experiment. If we define Φ(meta[i]) to be the evaluation re-

sults of the allocation EA based on the meta generated parameters i, and Φ(generic[i]) be

the allocation EA results based on the ith set of generic parameters, then we can express

our meta first experiment hypothesis as:

Hypothesis 2 The Meta-EA can generate effective and efficient parameters that are sta-

tistically better than a set of parameters based on previous experiments, given some static

p amount of processors and N tasks.

H0 : µΦ(meta[1])..Φ(meta[m]) = µΦ(generic[1])..Φ(generic[m])

H1 : µΦ(meta[1])..Φ(meta[m]) < µΦ(generic[1])..Φ(generic[m])

In order to test this hypothesis we must have a set of parameters, based on generic ex-

periments and literature suggestions, that the meta-EA results can be compared against

when executed on the allocation EA[52]. Using the same ideas for parameter selection as

described in Section 6.2, which have been expanded due to the decreased algorithmic com-

plexity of the single EA execution, we use the parameters as given in Table 6.4 [12][51][52].

As is the case with the coevolutionary algorithm, the results of the meta-EA are based

on the evaluations of the allocation EA. However, the meta-EA has two objectives that

must be examined, effectiveness and efficiency. In order to make the result comparison

between the generic and the meta developed parameters as fair as possible solutions are

compared from the meta generated Pareto front that reside near the evaluation amount

that the generic parameter uses.

The experiment is run through the allocation EA 10 times each over the same system

designs as given in Table 6.1 for an empty processor problem, changing the uniform random

6-7



seed each time. A larger amount of runs is used for this experiment because of the lower

algorithmic complexity of the singular algorithm compared to the coevolutionary type

algorithms (see Section 5.1). We then examine the max, min, median, mean, and standard

deviation of the results. With these results we also use a statistical student T-test to test

Hypothesis 2.

Parameter Literature Setting

Reference Population Size 100
Search Population Size 100
Total Number of Evaluations 2000
Reference Population Evolution Period 100
Number of Offspring for Ref. Population 100
Selection of Ref point for repair 0 (Uniform Random)
Selection of Repair Method for Search Pop 0 (Uniform Random)
Search Point Replacement Ratio 0.2
Reference Point Initialization Method 1 (Multiple)
Search Point Initialization Method 1 (Multiple)
Frequency of Operators 10 (For All)

Table 6.4 GENOCOP III parameters from generic experiments

Meta Problem Size Experiment. Given that the meta-EA validates itself as being

statistically more effective than generic experimental parameters, the next step is testing

what scale of the parameters to select. It is not prudent to assume that what works on

a small 16 processors 4 process system would necessarily work on a larger 128 processor

system. Simply because of the simplicity of the system, a 16 processor 4 process system

would not necessarily need as many evaluations as the larger experiment. However, the

converse may not be true as shown in the following hypothesis.

Hypothesis 3 Given the parameters on a large system(with respect to the amount of

evaluations necessary to optimize the system), these parameters are just as effective (if not

more so) on a small system.

H0 : µΦ(largeMeta[1])..Φ(largeMeta[m]) = µΦ(smallMeta[1])..Φ(smallMeta[m])

H1 : µΦ(largeMeta[1])..Φ(largeMeta[m]) < µΦ(smallMeta[1])..Φ(smallMeta[m])

For this hypothesis, we let Φ(largeMeta[i]) represent the allocation EA result from

the parameters gained from a meta execution using a large problem size and Φ(smallMeta[i])
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represents the parameters gained from a meta execution using a small problem size. In or-

der to test this hypothesis allocation EA is executed 10 times each on the afore mentioned

16/4, 64/16, 128/16 sized problems. The results are then statistically compared, again

using the standard student T test for hypothesis testing. The results are also compared

for each of the parameters for each of the problem sizes to see if they are statistically

equivalent (again using the student T-test for each). This allows a more narrow selection

of parameters that are effective/efficient for the allocation EA.

6.4 Allocation Design of Experiments

At this point the allocation EA has a ”good”, meta-EA generated, parameter set

for the to use, as well as test problems that the competitive EA generated for examina-

tion. With these the real-world effectiveness of the allocation EA can be examined. The

allocation EA is run on a variety of competitive coevolutionary EA generated problems,

as well as pedagogical problems and are examined with respect to the solution found in

comparison with a conceptual Orthogonal Recursive Bisection(ORB) algorithm. This al-

gorithm is chosen for comparison as it gives a good general solution that is known to be

quite efficient[39]. However, because of the specific choices chosen for the allocation EA

(see Chapters IV and V) comparing this algorithm to others becomes difficult at best. As

is described in Chapter III each of the different approaches must be examined with respect

to the choices made when developing the algorithm.

To further improve on the allocation EA, we compare the allocation EA’s performance

with and without a local search heuristic. The proposed heuristic is a two way sampler

that examines the generated EA chromosome for idle processors and tests the effectiveness

of running the same process that is located next to the idle processor. The algorithm then

evaluates the chromosome, finding the fitness of replacing the empty processor with either

of the processes allocated to the neighboring processors. This is a relatively simple hill

climber algorithm that has undoubtedly been used prior to this research investigation. At

this stage the algorithm has the evaluation result for the following three chromosomes:

• Original chromosome with unutilized processor.
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• Modified chromosome with unutilized processor set to the same process as the lower

index processor.

• Modified chromosome with unutilized processor set to the same process as the higher

index processor.

The chromosome is then set to the process with the best evaluation of these choices. The

algorithm then proceeds to the next empty processor.

If we allow allocHC to represent the Allocation EA using the hill climber algorithm

and alloc to represent the allocation algorithm without the hill climbing algorithm then a

comparison of these two strategies can be done as shown as:

Hypothesis 4 Usage of the hill climbing algorithm statistically improves the results of the

allocation EA system.

H0 : µΦ(allocHC[1])..Φ(allocHC[m]) = µΦ(alloc[1])..Φ(alloc[m])

H1 : µΦ(allocHC[1])..Φ(allocHC[m]) > µΦ(alloc[1])..Φ(alloc[m])

In order to test this hypothesis, the experiment is run 10 times using the allocation EA

both with and without the hill climber algorithm for all three problem sizes. The results

are then compared with respect to the overall fitness, as well as the clock time necessary

to execute.

6.5 Summary

This chapter has outlined four experiments for testing the capabilities of the three

algorithms in meeting the objectives defined in Chapter I. The first experiment tests the

ability of the competitive EA to produce problems that are difficult for the allocation EA

to solve. The next two experiments are concerned with the effectiveness of the meta-EA

in generating parameters that are effective and efficient for the allocation EA. Finally, the

allocation EA is tested both with and without the use of a hill-climbing algorithm. All tests

are directed towards developing an effective and efficient allocation algorithm for processor

allocation. The results and analysis of these tests are examined in the next chapter.
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VII. Results and Analysis

As is described in Chapter VI, single objective validation for the GENOCOP III algorithm

has already been accomplished[50]. The research reported here incorporates multiobjective,

multi-layer, and parallelism capabilities into this algorithm. This chapter focuses primarily

on multi-layer systems with respect to improving the performance of the allocation EA. For

further analysis, an examination of the MOP effectiveness of the GENOCOP III algorithm

is provided in Appendix E. Detailed explanations and results due to algorithm parallelism

are given in Appendix G.

This chapter follows the format of the design of experiments provided in Chapter VI.

Section 7.1 deals with the results of competitive problem generation. Section 7.2 details

findings based on the application of the meta-EA for evolving the allocation EA parameters.

Finally, Section 7.3 explains specific results of the allocation EA itself. Included in this

section is the analysis of the local search heuristic, the Pareto front objective comparison,

and a result comparison with an orthogonal recursive bisection algorithm.

7.1 Coevolutionary EA Results

The first experiment is done with the goal of validating the effectiveness of the com-

petitive EA. As can be seen from Figure 7.1 and Table 7.1 the results of the competitive

EA statistically reject our H0 from Hypothesis 1. However, this conclusion becomes ques-

tionable based on the overlap of variance shown in Figure 7.1. Ultimately the results of the

competitive need only be as good as those of the generic parameters, which they clearly are

regardless of what test is used. With further experimentation the competitive EA should

validate that it is capable of providing a strong set of test cases that are more effective

than the uniform randomly generated ones.

Parameter Type 16/4 Problem 64/16 Problem 128/16 Problem

P-value 1.3330E-4 1.24288E-2 2.44853E-3

Table 7.1 P-value for one-tailed student T-test (alpha=0.05) comparing the mean co-
evolutionary result to a mean uniform randomly generated result.
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Figure 7.1 Evaluation result comparison for competitive coevolutionary algorithm. Er-
ror bars represent the variances.

7.2 Meta-EA Results

As shown from Figure 7.2, Figure 7.3, and Figure 7.4 the Pareto front generated by

the Meta EA has a definite tradeoff between effectiveness and efficiency for the allocation

EA. It is also interesting to note the relative dominance between the different amount of

processors being executed. The majority of Pareto front points from the 8 processor exper-

iments dominates the solutions from the 4 processor experiments. This can be explained

based on the manner of parallelization as explained in Appendix G. Since a coarse-grain

model for parallelizing the system is used we in effect create a new autonomous EA for each

processor added. Thus with more processors the algorithm are able to explore a greater

area of the search space.

Parameter Generation Experiment. The first hypothesis that needs to be examined

with regards to the meta-EA is Hypothesis 2. In this hypothesis we are testing the meta-

EA’s ability to find effective parameters that are statistically better than those generated

with a known good set of parameters. For this experiment we examine each problem size

independent of the others. The meta-EA solution is selected from the Pareto front based
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Figure 7.2 Known Pareto front for meta-EA evaluation on a 16 processor 4 process
experiment

on it having an efficiency comparable to that used by the generic parameter set. Overall

statistics associated with the meta generated results are provided in Appendix H.

Parameter Type 16/4 Problem 64/16 Problem 128/16 Problem

Average Meta 1.03016E-4 1.099648E-3 8.79095E-6
Effective Meta (Problem Size) 4.5556E-3 9.11138E-3 3.70433E-2
Effective 128/16 7.57948E-5 2.07922E-1 3.70433E-2

Table 7.2 P-value for one-tailed student T-test (alpha=0.05) comparing each parameter
set against the generic parameters chosen from previous works.

For the 16 processor, 4 process experiment all of the P-values are well below our

alpha of 0.05, thus we reject H0 and must conclude that the meta-generated results (even

the average ones) are statistically greater than the results generated by our selected generic

parameters. This the results expected based on the ability of the meta-EA to fine tune

the parameters so that the allocation EA can more effectively search the search space.

For the 64 processor, 16 process problem the results are more varied. The P-values for

the mean comparison between the generic parameters and the effective 128/16 parameters

is clearly greater than 0.05, thus we would fail to reject H0 and conclude that the 128/16

parameters generate statistically equivalent results as the generic parameters. When we

examine the P-value for the average Meta parameters the results are much less than 0.05

and thus must reject H0 in favor of H1 for this problem. This rejection leans towards the
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Figure 7.3 Known Pareto front for meta-EA evaluation on a 64 processor 16 process
experiment

statistical conclusion that the generic parameters are better than the meta parameters.

This is not surprising as the average meta parameters are found based on an average

of the entire Pareto front and thus represent solutions that themselves do not reside on

the Pareto front. As for the parameters deemed effective for the 64 processor 16 process

problem specific the P-value is also less than 0.05 allowing us to once again reject H0 and

conclude that these parameters are statistically more effective than the generic parameters.

With the 128 processor 16 process problem we again see that the average meta results

clearly has a P-value that must reject H0 and conclude that the generic parameters are

statistically more effective. The set of effective parameters used for this experiment also

do not have a P-value greater than alpha and therefore must also reject our hypothesis.

These results too lend themselves to concluding that the results of the generic parameters

are statistically better than the meta generated solutions. However if we move to a two-

tailed test to determine whether or not the effective 128/16 parameters are statistically

equivalent to the generic parameters we find a P-value of 0.074086, which would mean that

our results are statistically equivalent (from a two-sided perspective).

Thus overall the meta generated solutions selected for their effectiveness statistically

prove themselves to be better than the generic parameters for the easier problems and

statistically equivalent for the harder problems. The mean Pareto front parameters show

themselves to be worse than the generic parameters in two out of three trials which is to
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experiment

be expected since they are an average of Pareto solutions and not actually on the Pareto

front themselves.

Meta Problem Size Experiment. Table 7.3 displays the student T-test Probabilities

based on a comparison of the results of using the effective 128/16 parameters on the al-

location EA against using the meta generated parameters for each specific problem size.

This experiment relates again to the Figures 7.5, 7.6, and 7.7. For all of these experiments

we fail to reject H0 in favor of H1 for all of the experiments except the average meta

parameters of the 64/16 problems and the average meta results of the 128/16 problem.

Meaning that statistically the results found by the effective 128/16 parameters are statis-

tically equivalent to the results found by these other parameters sets. When comparing

the effective 128/16 parameters to the average parameters for the 64/16 and the 128/16

problems we must reject H0 for H1 and conclude that the effective 128/16 parameters are

statistically more effective than these two sets of parameters.

Parameter Type 16/4 Problem 64/16 Problem 128/16 Problem

Average Meta Parameters 1.96152E-1 9.9501E-6 1.13368E-4
Effective Parameters (Problem Size) 1.3863E-1 1.20499E-1 n/a

Table 7.3 P-value for one-tailed student T-test (alpha=0.05) comparing each parameter
set against the effective 128/16 parameters.
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Figure 7.5 Allocation EA results comparison for a 16 processor 4 process experiment
with different sets of parameters.

This validates that the effective parameters for a larger problem are effective on

smaller sized problems. Thus in real-world application of the allocation EA, using these

larger parameters would allow for optimization of the smaller problem sizes.

7.3 Allocation EA Results

The hypothesis being examined for the allocation EA is Hypothesis 4. In this hy-

pothesis we are testing whether or not a local hill climber algorithm helps to improve the

results of the allocation EA using an already optimized set of parameters. Table 7.4 gives

the P-values for each of the problems for comparing the allocation results statistically with

and without the use of the hill climber algorithm. As is shown the P-values are all much

greater than our alpha of 0.05 so we must fail to reject H0 and conclude that for at least

this problem the hill climber algorithm results are not statistically different from the results

produced by the standard algorithm.

There are many potential reasons why this result occurs. First, the hill climber

algorithm might not actually provide any benefit to the system. If this is the case then
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Figure 7.6 Allocation EA results comparison for a 64 processor 16 process experiment
with different sets of parameters.

Parameter Type 16/4 Problem 64/16 Problem 128/16 Problem

P-value 0.140039 0.47798 0.470676

Table 7.4 P-value for one-tailed student T-test (alpha=0.05) comparing the allocation
EA effectiveness with and without the use of a local hill climber algorithm.

when moving through the algorithm and evaluating the different options, the initial one

would result in being the most optimal. As this is not likely to be the case for every

execution this reasoning probably isn’t very likely. What is more likely is that the meta

generated parameters that this algorithm used are effective enough to find good solutions

in the system. Given that the parameters were optimized for dealing with these problems

without the local search heuristic, the solutions of the search should be as effective with

or without the heuristic.

Comparative Pareto Fronts. In order to have a better understanding of what the

allocation EA objectives represent, an examination of the different objectives resident

within the allocation EA is necessary. For analysis, the experiment is executed on two

different problems. Both problems are based on a 16 processor system, with four processes
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Figure 7.7 Allocation EA results comparison for a 128 processor 16 process experiment
with different sets of parameters.

trying to execute and an assumed mesh backplane where process communication costs

between processors is directly proportional to their distances. In the first problem (Problem

1) none of the processors are initially allocated. The second problem (Problem 2) has all

of the processors initially allocated uniformly except for one empty processor. We use the

multiobjective capability of the modified GENOCOP III for enumerating the Pareto front

of the 16 processor 4 process system.

The multiobjective metrics for the different problems is given in Table 7.5. An exam-

ple of the phenotypic results of a solution of non-dominated vectors is given in Figure 7.8.

Figure 7.9 depicts the specific tradeoffs between combinations of objectives. The rollover

cost are embedded into each of the charts. Each shape represents the amount of processes

that were not included as part of the generated solution.

In order to select a load balancing configuration for a distributed system an exam-

ination of the tradeoffs between each of the different objectives is necessary. Since we

are working with a small amount of objectives we can make this comparison via graph-

ical comparisons, for a larger set of objectives a more effective method would be using
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Mean Variance Mean Variance Mean Variance
ONVG ONVG Spacing Spacing Time Time

Problem 1 34.8 3.7 0.379 0.0022 80.75s 1.5833
Problem 2 11.6 42.8 0.2404 0.0036 79.2 2.7

Table 7.5 Multiobjective results for the allocation problems on a 16 processor 4 process
system
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a correlation analysis chart [32]. Our examination is done based on the priorities of the

intended application. The first objective that is examined for any application is that of

rollover. Regardless of the intended application, if a process is to be executed it is started

as soon as possible. Thus not including processes in the generated allocation should be

avoided if at all possible and hence our minimization of process rollovers. As can be seen

from Figure 7.9, chart C, there is clear relationship between the amount of requests able

to be satisfied and the rollover cost. This is also intuitively correct for as less processes are

executed more processors are available for the remaining processes to utilize.

Comparing the cost of communication to the amount of processes not included, it can

be seen that as less processes are included the higher the communication cost. Since fewer

processes means more processors per process the communication being higher between

these processors is understandable.
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Figure 7.9 Comparison of specific objective tradeoffs.

When examining the request costs with respect to the other objectives it appears

that the request cost is inversely proportional to link cost (Figure 7.9A) and directly

proportional to preemption cost (Figure 7.9C). As the amount of processors allocated to

each process is increased the request cost is lowered (see Equation 5.5, but with the increase

in processors per process an increase in communication overhead occurs and hence the link

cost increases as shown by Equation 5.9. Due to the stochastic nature of the MOEA, the

allocation that is input to the system as the initial state does not imply that the result

are the same, unless the processes specifically state that they are not preemptible. Since

for this experiment all processes are assumed to be preemptible, processes are allowed to

roam from their initial configuration. From Figure 7.9, Chart C, we see that most of the

requests and preemptions lie in lower region of the objectives. Those solutions that are in

the higher area of the objective space do so for the communication cost, trading preemption

and request costs for lower link costs, as shown in Figure 7.8 and Figure 7.9, chart B.

Another important factor that should be examined that is not reflected in the objec-

tives is the amount of unutilized processors in the system. The addition of extra processors

to a process is not always beneficial, and thus should not be forced upon applications [44].

As such the addition of an extra objective for minimizing the amount of unused proces-

sors is not included. The average amount of unused processors for a Pareto front with 38

solutions is 3.94 ± 0.318 with a min of 0 and a max of 10. For the experiment presented
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Figure 7.10 Allocation EA genotypic results (Pknown) of the fully utilized processors.
The top row has all four processes included, the bottom row has three
processes included. The number and shading in each block represent the
assigned process.

in Figures 7.8 and 7.9, the solutions marked with a circle represent those that utilize all

available processors. As can be seen, for this experiment, there are four solutions that

utilize all available processors. Two of these solutions allocate all of the processes, two

allocate all but one. All four points have a relatively higher request cost, which is again

explainable based on the fact that there are less processors available since they are all

being utilized. The phenotypic results are shown in Figure 7.10 where it is evident that

the processes are beginning to cluster into groups for minimizing communications.

When comparing these results to an orthogonal recursive bisection(ORB) we can see

from Figure 7.11 that the processors would be divided equally amongst the processes. This

type of allocation takes no measure of the different processor capabilities, nor does it take

into account the different communication latencies between different sets of processors.

Because the allocation EA is able to take into account all of the hardware statistics it

is able to allocate processors so that they are more efficiently located for the intended

process. This also takes into account real-world changes that could occur in the systems,

including hardware failures or heterogenous systems.

In terms of the amount of processors allocated to each process, the ORB does equally

distribute the processors among processes. If the processes then required equal amounts

of resources this would be an effective approach. However in a real-world system processes
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Figure 7.11 Orthogonal recursive bisection genotypic results for a 16 processor, 4 process
system.

require a varied amount of resources. With the allocation EA processes have the ability

to request ranges of processors. The amount of processors given for each process is also

encouraged towards the process’ upper limit. This allows for the processes to have the most

processors available allocated to them, while still equitably sharing the system resources.

Overall the allocation EA allows for a lot more customization per each load balancing

solution. The algorithm merges the hardware and the process information during runtime

so that it can respond to real-world developments. While the EA does not guarantee the

optimal configuration, it does allow for more thorough analysis of the system that is being

balanced.

7.4 Summary

This chapter has described the results of testing the statistical hypotheses provided

in Chapter VI. Further, since these hypotheses were developed to meet the requirements of

the initial objectives stated in Chapter I the results fulfill the stated objectives. The first

objective is met by the development and execution of the allocation EA and is validated

based on comparison to the ORB system. The second objective is fulfilled by statistical

evaluation of the coevolutionary results obtained in Section 7.1. The third and fourth
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objective are met in Section 7.2 by the analysis of the meta-EA results compared to generic

and different problem size results, respectively. The final objective is met by the analysis

provided for the allocation EA using the local-search heuristic performed in Section 7.3.

Overall, the EA system is shown to perform in an effective and efficient manner, thus

allowing the generation of an effective and efficient allocation EA. ,

7-13



VIII. Conclusions and Recommendations

This research has designed and developed a load balancing algorithm that is both effective

and efficient on a variety of HPC systems. It was designed based on current load balancing

knowledge, developed so as to integrate the most current EA research, and verified using

statistical experiments. Through this process each of the goals and objectives that were

listed in Chapter I were accomplished.

For the choices that must be considered when designing an allocation algorithm for

an HPC system (as described in Section 2.1) were examined. Chapter II addressed the

choices of allocation medium, objective selection, preemption policy, process arrival rates,

a priori service demand knowledge, and process priorities. The available options, with

a general depiction of how each choice would affect the system once implemented, were

discussed for each choice. The specific problem domain for processor allocation problems

was presented in Section 2.8 to further define the problem that is the focus of this research

effort.

Chapter III examined a few of the many algorithms available for optimizing a load

balancing problem. For each algorithm, including Set Partitioning, Max-min/Min-min,

Simulated Annealing, Orthogonal Recursive Bisection, Eigenvector Recursive Bisection,

and Evolutionary Algorithms, a domain description for application to a general load bal-

ancing problem was provided. The combination of Chapter II and Chapter III fulfill the

first goal stated in Section 1.1.

Chapter IV discussed the high-level choices selected for both the problem and algo-

rithm domain. The chapter began by developing the application specific problem domain

that allows the system to be load balanced using a dynamic spatial policy. Five objectives

were selected that allow a balanced distribution of processes onto processors with regard to

the individual processor performances, the communication backplane, the process specific

preemption capabilities, and the number of processors (both required of and requested by)

each process. The problem domain was further defined to avoid expected service demand

and priority between processes.
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A mapping of the problem domain to an algorithm domain was performed in Sec-

tion 4.2. This mapping allowed the implementation of both hardware and software con-

siderations. For hardware information the algorithm inputs comparative processor per-

formances and intra-processor communication capacities. For process information the

algorithm inputs a current state of the system based on the allocation of processes to

processors, the requested addition and/or removal of any process to the system with the

corresponding number of processors requested and required for execution and the possibil-

ity of preemption.

Using this mapping, Evolutionary Algorithms were selected for problem optimization.

Section 4.3 describes the three different EAs which include two coevolutionary EAs for fine

tuning the allocation EA. The first algorithm examined in Chapter IV is the allocation EA,

which uses the mapping from the load balancing problem domain to the algorithm domain

to find solutions. The first coevolutionary EA is a competitive EA designed for generating

more difficult than random problems. The other coevolutionary EA is the meta-EA which

generates a fine-tuned set of parameters that the allocation EA can use across a range of

problem sizes.

Chapter V further defined the algorithm implementations developed in Chapter IV.

These chapters fulfill the second goal in Section 1.1. Chapter V began with an explanation

of the GENOCOP III algorithm and its modifications, including the capability to optimize

Pareto multiobjective problems, to execute coevolutionary problems, and to incorporate

the parallelization technique used by the meta-EA.

The operations of the allocation, competitive, and meta algorithms were defined

with respect to their objectives, feasibility operators, selection functions, and solution

operator. The objective functions used for evaluating the allocation EA solutions for both

single and multiobjective instantiations were described mathematically in Section 5.2, and

their importance to the optimization of the system was explained. The objectives for the

other two algorithms were related to the allocation EA, as required for coevolutionary

algorithms. Section 5.6 described the reasoning behind the selection of the coarse-grained

parallelization technique applied for the meta-EA.
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Chapter VI described the experiments. These experiments were designed to fulfil the

quantitative objectives enumerated in Chapter I. Specifically, experiments were performed

to test the effectiveness of the competitive algorithm, the parameter generation capability

of the meta-EA, and the performance of the local hill climbing algorithm. Each experiment

used statistical hypothesis testing to improve understanding of the overall results.

Chapter VII presented the experimental results. Based on the second quantitative

objective given in Section 1.3, the first set of experiments statistically validated the effec-

tiveness of the competitive coevolutionary EA for generating problems at least as good

as the randomly created ones. The third objective was fulfilled in Section 7.2, where the

meta-EA was shown to generate statistically more effective allocation EA parameters than

those found in generic experiments. It was demonstrated that the parameters from larger-

size problems were at least as effective on smaller problems as parameters generated for

these smaller problems, thus meeting the requirements of the fourth objective.

For the allocation EA, Section 7.3 fulfilled the fifth requirement by showing that

the use of a local hill-climbing algorithm does not significantly improve the results of the

algorithm when the algorithm uses a good set of parameters. This section also provided a

comparison of different objective tradeoffs resident in the allocation EA, and assessed the

significance of the tradeoffs for application designers who intend to use a load balancing

algorithm.

These results fulfilled the primary objective of this research effort by validating the

effectiveness of the allocation EA for assigning processes to processors. The meta-EA

determined parameters that allow the allocation EA to find solutions in an effective and

efficient manner. These results may be incorporated into a real-world operating system

for handling processes such as those described in Appendix A. Thus researchers using this

algorithm will be able to allocate processes to processors in an effective manner.

As mentioned in Chapter I, the first goal was to understand the technology and

algorithms associated with processor allocation problems, and these topics were covered

in Chapter II and Chapter III. Chapter IV and Chapter V detailed the development

of the allocation algorithm for obtaining near-optimal solutions. Chapter III reviewed
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different algorithms associated for this problem domain, meeting the goal of examining

the allocation algorithm with respect to other available algorithms. This goal was further

completed by the comparison to the ORB algorithm performed in Chapter VII. The goal

for generating a test suite was accomplished using the competitive EA, and the final goal

of improving allocation EA performance in both effectiveness and efficiency was met using

the meta EA. Both algorithms were explained throughout development and were validated

in Chapter VI and Chapter VII. Through the fulfillment of these goals an effective and

efficient allocation algorithm was developed, thus meeting the overall goal of this research

investigation.

With the effective and efficient allocation algorithm researchers can maximize their

use of high performance computing resources. Since the algorithm is made to support any

generic HPC system it is capable of being used for a variety of applications from digital

signal processing through discrete event simulations. The algorithms ability to support

operations is not limited to the military either, homeland security efforts for real-time

aerosol and gas-hazard prediction, using real-time weather data would be supported with

this system in the same manner as the Air Force digital signal processing efforts[63].

Recommendations for Future Work

The primary future addition to this research effort would be the incorporation of

temporal allocation in addition to spatial allocation. The work presented here requires the

operating system to signal when a change to the active processes has occurred. This change

could include the addition of a new process, or the elimination of a processes due to the

absence of needed processors. For either change a signal must be given to the algorithm

for it to recompute the optimal state of the system.

A more proactive approach would include the addition of temporal statistics. If the

system contained historical data that could be analyzed statistically for patterns, then

it would be able to predict possible future states of the system. Based on potential fu-

ture states, the system could execute the allocation EA to generate a solution for each

contingency.
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The new algorithm would be able to run continuously either on a dedicated processor

on various idle processors in the system. If a predicted change to the system occurs, then

the algorithm would use the pre-generated solution. If a change to the system occurs that

is not predicted, the allocation would run reactively, as in the current system. In either

case the overall cost to the system would be no worse than that of the current allocation

EA. If the algorithm to makes accurate predictions on the next state of the system, the

benefits could be significant.

Further enhancements to the system would include a dynamic hardware analyzer

that would provide normalized processor and communication comparisons needed for the

allocation algorithm. With this added function the allocation algorithm could be installed

directly into an operating system. The operating system could then be fully automated

for balancing the overall HPC system processing requirements.
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Appendix A. Load Balancing Applications

To appreciate the applicability of a load balancing algorithm, at least a cursory exami-

nation of potential applications is beneficial. Two algorithms selected are Department of

Defense based projects that could potentially use the load balancing algorithm for improv-

ing overall system performance. One application is digital signal processing done by the

Air Force Research Laboratory (AFRL), which uses multiple multiprocessor applications

for analyzing signal information. The other application is a large-scale warfare simulator

used by the Air Force Wargaming Institute(AFWI) for educating Air Force personnel on

Air Force doctrine.

A.1 Digital Signal Processing

The analysis of data collected from antenna and sensor arrays is a complex task that

must be done extremely fast in order to support the real-time applications that use the

data. One project that has been designed to help further the development of HPC an-

tenna/sensor analysis applications is that being done by the Common High Performance

Computing Software Support Initiative (CHSSI) with their digital Signal and Image Pro-

cessing (SIP) efforts[2]. This project examines the use of HPC systems for large scale

real-time calculations of the following scalable digital signal processing algorithms [2]:

• Space-Time Adaptive Processing (STAP)

• Multi-Target Tracking/Tracking Toolbox

• 2-D Fast Fourier Transform(FFT)

• M-to-N Data Redistribution

The SIP effort is based on the collection of data from a variety of sensor data including

including radar, sonar, images, and others. This work supports U.S. military applications

including surveillance, reconnaissance, intelligence, communications, avionics, etc [2]. Each

of these algorithms have been ported to a parallel environment in order to support the

tremendous computational efficiency that real-time processing requires.
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Space-Time Adaptive Processing (STAP) STAP is a method that uses both spatial

and temporal information to identify potential targets using statistical analysis. It uses a

2-dimensional FFT filter analysis for detection of targets amongst ground clutter and other

types of interference. STAP requires an extensive number of computations in a real-time

manner using a data cube[14].

Multi-Target Tracking/Tracking Toolbox Multi-target tracking system applications

are responsible for tracking and differentiating between multiple targets based on the sensor

data. Involved in this work is the evaluation for which targets are producing which features

from the sensor data. In order to do this analysis multiple filters and sensor data inputs

are used with statistical hypothesis generation and testing in order to differentiate between

objects [20].

2-D Fast Fourier Transform (FFT) A fast fourier transform is used to locate signals

amongst a large number of interference. It is used not only in sensor analysis but also in

quantum physics, linear systems analysis, probability theory and others [24]. Since there

are so many applications that take advantage of Fourier transforms a lot of research has

been made towards the development of more efficient algorithms [58]. Implementing a

2-D FFT is even more difficult however as each FFT is calculated first in one dimension,

then a shift or matrix transpose is performed with the FFT being recalculated in the

second dimension. This produces a great deal of both communications and computations

making the parallelization difficult an the distribution across processors important for

overall efficiency [58].

M-to-N Data Redistribution M-to-N Data redistribution attempts to optimize signal

processing applications by limiting the number of remote memory accesses needed by

each processor. At each phase of the analysis the data are redistributed so that the each

processor has the optimal number of data for processing locally [23]. This algorithm

works by transforming a cyclically distributed pattern over some initial amount number

of processors (M) to a different cyclic on a potentially different (N) number of processors

[59].
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All of these applications require a great deal of computing resources provided in a real-

time fashion. An effective load balancing algorithm must therefore be able to handle the

constantly changing processing requests, allowing for new requests to be quickly inserted

into the HPC system without damaging the workload of the processors that are already

active.

A.2 Discrete Event Simulation

Discrete event simulations provide users with the ability to imitate a real-world sys-

tem over a set period of time. By being discrete the system changes only at and for

regular time intervals [6]. By using a simulation approach the users are able to, relatively

inexpensively, examine the real-world system. This approach also gives users the ability

to compress or expand time as needed for analysis. There are a variety of DES systems

that model many different real-world applications in everything from computer system

networks through restaurant traffic analysis[6]. For the purposes of this paper we singled

out a specific training simulation called the Air Force Command Exercise System (ACES).

ACES is a synchronized conservative discrete event simulation used by the US Air

Force. It currently is a serial program used for air campaign planning with the objectives

of aiding users in their understanding and appreciation of [82]:

• Air Force doctrine in a theater exercise.

• The concepts of air campaign planning.

• The synergistic effect of well-integrated air, land, and sea component plans.

• The command and staff relationships involved in combined operations.

The ACES model simulates battle scenarios for which the users can apply their

strategies. In one of the ACES simulations, called Pegasus UK, seven different simultaneous

simulations are performed that involve 90 or more participants. In each of the seven

simulations the participants are further subdivided into red and blue teams. These teams

then compete against each other using the ACES application.
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The simulation moves with simulated 24 hour increments where each team develops

a theater campaign plan that they intend to be deployed against their opponents. The

simulation itself provides theater maps and status reports while the players determine

strategy, logistics and their plan of attack [83].

Once the campaign plan is decided, it is input into the ACES engine. The inputs

include the air, land, and sea orders of the units that are resident within the campaign

environment. Each of these units is assigned missions that they act during the event step.

ACES then proceeds to compute the movements of the forces and the effects thereof for

the next 24 hour increment.

Using a distributed model, the ACES system can be expanded into a much larger

simulation. Currently, in the serial version all of the players must be decomposed into

small subgroups such that each must work autonomously from the other groups. With

a distributed version a larger model could be simulated, requiring multiple processors

computing scenario regions with events communicated between systems. Thus instead of a

small localized region that is independent of anything neighboring, a more real-world model

could be implemented. This larger system would provide a better simulation of real-world

multi-theater engagements where the regions must contend for the same resources, and

actions by one commander could affect the region of another.

The distributed ACES system would require communication between multiple pro-

cessors as well as the graphical user interface (GUI). This requires a great deal of control

by the processors with a variety of computations and communications being necessary at

different times throughout the scenario. With the goal being to distribute the system

such that each regionalized area can be processed as quickly as possible with transparency

between regions a load balancing algorithm must try to ensure that the processors are

utilized to their fullest throughout the engines execution.
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Appendix B. Multiobjective Approaches

Multiobjective Algorithms can be decomposed into three groups based on solution selection[75].

The types are:

A Priori Preference Articulation (Decide −→ Search) The decision maker (DM) creates

a scalar cost function, turning the MOP into a single objective problem.

Progressive Preference Articulation (Search←→ Decide) Optimization occurs on a par-

tially articulated preference set. Once optimized, a final decision is chosen by the

DM based on this set.

A Posteriori Preference Articulation (Search −→ Decide) A Pareto optimized set is

generated and the DM chooses from this set.

A recent study indicates that the popularity of multiobjective evolutionary algo-

rithm(MOEA) applications has substantially increased during the last seven years [73].

During this time the a posteriori approach has been by far the prominent choice of MOEA

developers. Many of these researchers use Pareto-based selection approaches. A more

detailed examination of the most common implementations of a priori and a posteriori

algorithms helps to clarify the distinctions.

B.1 Pareto Dominance

Using the formulation as provided by VanVeldhuizen [74], a solution is said to be

Pareto dominant if for at least one objective it has a greater evaluation than the solution

it is being compared against while all other objectives are no worse than the comparative

solution. This is algorithmically described as:

Definition 1 (Pareto Dominance): A vector u = (u1, . . . , uk) is said to dominate

v = (v1, . . . , vk) if and only if u is partially less than v, i.e.,

∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. ¤
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Then for all given solutions, the Pareto optimal set of solutions is found by finding

those solutions which are Pareto dominant to all other solutions. This is described as:

Definition 2 (Pareto Optimality): A solution xu ∈ Ω is said to be Pareto optimal if

and only if there is no xv ∈ Ω for which v = f(xv) = (v1, . . . , vk) dominates u = f(xu) =

(u1, . . . , uk). ¤

With these two definitions we can begin to describe the comparison between different

multiobjective comparison techniques. It should be noted that the a priori and a posteriori

techniques both find Pareto optimal solutions. The only difference between the two is that

with the a posteriori approach a full set of Pareto optimal solutions is enumerated, while

the a priori approach finds only a single solution[12].

B.2 Weighted-Sum Selection MOEA

A standard implementation of a priori multiobjective optimization techniques is the

use of a weighted-sum objective value, otherwise known as an aggregate function [16]. This

approach combines all of the objective functions (fi(x)) into a single function of the form

min
k
∑

i=1

wifi(x) (B.1)

where wi ≥ 0 are the weights that are applied to each objective by the decision maker prior

to the program being executed. This approach works when the decision maker has enough

knowledge of the system to be able to specify the exact weights for each objective in order

to direct the search towards the requirements desired [12]. Aggregate functions have the

advantage of being comparatively easy to implement in that they simply turn the multiple

objectives into a single objective for evaluation. The disadvantages to this approach lie in

the fact that having the appropriate system knowledge for what to make the weights prior

to execution may be difficult or even impossible to attain.
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Real World Model −→ Discrete Model −→ Computational Model
P∗,PF∗ Ptrue, PFtrue Pknown, PFknown

Figure B.1 Pareto Spectrum: The progression of Pareto solutions from the real world
through the computational model

B.3 Pareto-based Selection MOEA

A Pareto based MOEA searches the problem space using all objectives defined by

the problem in an attempt to seek out a list of non-dominated vector solutions. Using

the terminology defined by Van Veldhuizen [75] the list of non-dominated solution vectors

comprises the Pareto optimal set (P∗) and the evaluated objective vectors of P form the

Pareto front (PF∗). Since the algorithms are being executed on discrete systems the real

world P∗,PF∗ must be approximated as the discrete form of Ptrue, PFtrue as shown in

Figure B.1. Each objective fitness value is calculated independent of the other objective

fitness values. These values are each included in the chromosomes solution vector. It is this

solution vector that defines whether the chromosome is non-dominated and thus would be

included in the current Pareto optimal set. The collection of all non-dominated vectors

up to generation t in the computational model is stored and known as PFknown(t), the

actual solutions are stored and known as Pknown(t). Thus an optimal Pareto algorithm

finds Pknown such that Pknown ≈ Ptrue for all finite solutions.

An example of these concepts is illustrated by Figures B.2 and B.3. These figures

are based on one of Fonseca’s proposed MOPs used for benchmarking of multiobjective

Pareto fronts[25], [74]. Figure B.2 shows the coordinate points of the Pareto Optimal set.

Figure B.3 shows the possible discrete combinations of objective functions where the inside

curve represents the Pareto Front solutions.

There exists multiple implementations for storing the secondary population of Pknown(t).

One common approach is to simply add the current population at each step (ie- Pknown(t) :=

Pcurrent(t)
⋃

Pknown(t − 1) and periodically removing any chromosomes that have domi-

nated vectors from the population. This removal process is done based on the Pareto

dominance through a vector comparison known as Pareto ranking. In order to attempt

a uniform distribution of solutions across the Pareto front an operator termed niching or

fitness sharing may be used. Many varieties of the ranking and fitness sharing operators
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Figure B.2 A discretized Pareto optimal set for the MOP2 multiobjective benchmark
problem.

exist, an examination of these algorithms is beyond the scope of this paper but the author

would refer the curious reader to [75],[17].

Once the Pareto front has been found it is then the job of the decision maker to

select which point would be best for the needs of the specific project. This makes Pareto

optimization an a posteriori technique. With proper operators this formulation can find

fully enumerated optimal surfaces for which dynamic selection at run time is available,

depending on the problem, of equally non-dominated solutions.

B-4



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function 1

Fu
nc

tio
n 

2

Fonseca (2) Pareto Front

Figure B.3 A discretized Pareto optimal front, for the MOP2 multiobjective benchmark
problem, enumerated by the *’s with the other points being feasible points
of the search space.
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Appendix C. Formalized Evolutionary Algorithms

According to Bäck [5] an evolutionary algorithm (EA) can be generally described as that

of Algorithm 1

Algorithm 1

t := 0;

initialize P (0) := {~a1(0), . . . ,~aµ0(0)} ∈ Iµ

evaluate P (0) := {Φ(~a1(0)), . . . ,Φ(~aµ(0))}
while (ι(P (t)) 6= true) do

· recombine : ~P ′(t) := rθr
(P (t));

· mutate : P ′′(t) := mθm
(P ′(t));

· evaluate : P ′′(t) : {Φ(~a′′1(t)), . . . ,Φ(~a′′λ(t))};
· select : P (t+ 1) := sθm

((P )′′(t) ∪Q);

· t := t+ 1;

od

In order to properly understand the algorithm it is of course necessary to define the

terms used:
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P Population

~ai Chromosome i of the Population

µ Parent population size

λ Child population size

Q Additional Available Individuals

Φ Fitness function

s Selection function

m Mutation function

r Recombination function

θr Recombination Parameters

θm Mutation Parameters

θs Selection Parameters

Ω Set of Probabilistic Operators

Ψ Generation Transition Function (Iµ → Iµ)

Other common operators that are employed for EA’s include chromosome decoding

operators Υ so the chromosome’s evaluation can be performed, validation operators ϑ

for ensuring the feasibility of the chromosomes, objective function f for calculating the

objective value for each chromosome, and a scaling function δ for ensuring the evaluation

results are appropriately comparable.

Using this algorithmic notation an EA is defined by its specific parameters and

operators [5]

EA = {I,Φ,Ω,Ψ, s, ι, µ, λ}; (C.1)

Where I is the consists of the set of elements that compose the chromosome of the EA

I = AxxAs where Ax and As are arbitrary sets that create the mapping from the problem

domain to the solution domain. The fitness function Φ, takes the chromosome and maps

it into some value that can be objectively compared (say for example a real number R)

Φ : I → R; (C.2)
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This is done via the algorithm implementers selected mapping of the problem domain to

the solution domain.

The chromosomes are then modified dependent on the operators (and their associated

parameters) based on the set of available operators to the EA Ω, the most notable of which

for the purposes of evolutionary algorithms are recombination (r) and mutation (m).

Ω = {ωΘ1 , . . . , ωΘz ωθi
: Iλ → Iλ} ∪ {ωθ0 : Iµ → Iλ}; (C.3)

{mθm
, rθr
} ∈ Ω; (C.4)

Mutation is formally defined as the modification of only a single chromosome without

genetic data being passed from any other chromosomes. Recombination is defined as being

the modification of one or more chromosomes based directly on the acceptance of genetic

material from other chromosomes. There are of course many different variations from

these basic genetic operators, as well as many other naturally occurring genetic operators

that have been implemented for EA’s. Some of these other operators include inversion,

conjugation, translocation, and transposition [64].

Using some combination of the genetic operators we are able to make a transition of

the EA to the next generation of the population Ψ.

Ψ(P ) = sθs
(Q ∪ ωθi1

(. . . (ωθ0(P )) . . . )); (C.5)

where Q ∈ {∅, P} and {i1, . . . , ij} ∈ {1, . . . , z}. An EA must also evaluate and select from

the results. This is done with the evaluation function Φ and some selection function s.

sθs
: Iλ ∪ Iµ+λ → Iµ; (C.6)

EA’s have been used for a wide variety of problem domains. They have found a

niche for themselves in solving NP-complete problems [73], including the protein structure

prediction problem [43], wire antenna designs [76] [35], load balancing [18] [7], and a variety

of other applications not to mention the ”standard” NP-complete problems like TSP [27],
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Prisoners Dilemma [4], etc. In many cases EA’s are found to perform superior to other

heuristics on the same problem domain [39]. Thus making them an excellent option for

application to optimization problems.

EA Varieties

Evolutionary Algorithms themselves have evolved into a whole plethora of different

types of algorithms. Table C describes the basic elements of the most commonly used

evolutionary algorithms: Genetic Algorithms, Genetic Programs [42] [67], Evolutionary

Strategies [85], linkage learning GA’s [33] [34] and Evolutionary Programs.

Due to the fact that each of these EA heuristics are based on processes that are seen

in nature the operators that control these EA’s have a high tendency of being able to be

used in EA’s other than the those that initially utilized them. At the very least the basic

underlying biological idea, which guides the individual operators, can be modified so that

it would work in other EA’s. In this manner many of the EA’s are slowly evolving together

taking advantages of other algorithms to make themselves better. The fundamental differ-

ences in the original algorithms still exist, but the lines between the different algorithms

are slowly blurring.

These are by no means the only types of EA’s that exist. Many different versions

of these algorithms have been developed and researched. Some notable examples would

include messy genetic algorithms [29] [28] particle swarm optimization algorithm [72], ant

systems [49] [8] [70], selfish gene algorithms [19], Immune system algorithms [22] [57] and

various other types of algorithms. Each of these types differs due to some distinction it

has for changing the operators. Each class of algorithm has its own type of operator that

they claim make them unique, in general they are all of the same class of algorithms, and

can generally be used for the same overall result for problem optimization. This is not to

say that you can just pick one algorithm and it solves every problem you give it better

than any other, on the contrary the ”no free lunch” theorem [84] states that no algorithm

is best for all problems. Thus, only after a careful examination of the problem should an

algorithm be chosen, and that algorithm should be chosen based on the benefits that its

representation can bring to bear on the search.
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ES [5] EP [5] GA [5] GP

Representation Real-valued Real-valued Boolean,
Real, Inte-
ger

Functions
and Termi-
nals (string)

Fitness is Objective
function
value

Scaled
objective
function
value

Scaled
objective
function
value

Program
results
function
value

Self-
adaptation

Standard
deviations
and rotation
angles

None (stan-
dard), vari-
ances(meta),
correlation
coefficients

Coevolution,
vari-
ances(meta)

Coevolution

Mutation Gaussian,
main opera-
tor

Gaussian,
only opera-
tor

Bit-
inversion/
Random
number
generation,
background
operator

Function/
terminal re-
placement,
subtree
mutation,
secondary
operator

Recombination Discrete
and inter-
mediate,
sexual and
panmictic,
important
for self
adaptation

Discrete
and inter-
mediate,
sexual and
panmictic,
important
for self
adaptation

z-point
crossover,
uniform
crossover,
only sex-
ual, main
operator

Tree based
crossover,
primary
operator,
usually
sexual

Selection Deterministic,
extinctive
or based on
preservation

Probabilistic,
extinctive

Probabilistic,
based on
preservation

Probabilistic,
based on
tournament
or rank
fitness

Constraints Arbitrary
inequality
constraints

Arbitrary
inequality
constraints

Simple
bounds by
encoding
mechanism

Hardware
and lan-
guage
constraints,
feasibility.

Table C.1 Algorithmic comparison of basic EAs
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Appendix D. Coevolutionary Algorithms

Coevolution in biology is the interaction of multiple species within their environment.

This principle of interacting is found throughout nature, although the interactions are not

necessarily all of the same form. Some interactions are beneficial, like the remora that

cleans parasites from shark skin. Other interactions are beneficial only one direction, like

the shark acquiring its food at the expense of other life. The interaction of each species

with other species is based on the relationship between the two species and the benefits

gained by both species.

Moving to the computational realm, coevolution can be directly applied to biological

algorithms such as EAs. By incorporating these different concepts together the engineer

hopes to gain some overall value of the system and be able to find new and improved

solutions for different problems being examined by the algorithm.

Coevolutionary Algorithms are algorithms that use the fundamentals of EAs with

multiple interacting populations each with their own unique fitness criteria to optimize

within a system. This approach involves using two or more distinct EA systems that each

have a separate evaluation function that is somehow affected by the evaluation results of

the other EA(s). In this manner both EA systems are forced to evolve together in some

type of relationship. The goal of coevolutionary algorithms is that the system evolves

solutions between the multiple algorithms that would not have been found using standard

approaches.

This appendix covers the fundamentals of coevolutionary algorithms. The different

types of relationships between algorithms is described in Section D.1. Section D.2 describes

different ways that coevolutionary Algorithms can be implemented, followed in Section D.3

where examples of implementation approaches are explained. This tutorial is not intended

to be a complete listing of all research in coevolutionary algorithms, rather it is a tutorial

with basic terminology and examples to be used as an introduction into the vast field of

coevolution.
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D.1 Relations of Coevolutionary Algorithms

There are a variety of methods for classifying algorithms that are coevolutionary. A

standard approach is through the analysis of the interactions between each of the popu-

lations. This type of analysis typically uses biological definitions to classify each set of

populations based on how they work together. In order to be able to explain coherently

the computational models it is important to have a good understanding of their biological

definitions. We use the definitions presented by Morrison as the foundations for which to

build our exploration of the interactions. The basic structure for which all specific rela-

tionships are based on can be described from the first four definitions of symbiosis, and

antagonistic vs protagonistic symbiotic connections being defined as [55]:

Definition 1 (Symbiosis) Symbiosis is a relationship between two (or more) individuals

such that the fitness of one individual directly affects the fitness of the other individuals(s).

Using this definition Morrison formally restates the coevolution as [54]:

Definition 2 Coevolution of a population with itself occurs when individuals within the

population are in symbiosis with other individuals in the same population. Coevolution

of a pair of populations with each other occurs when individuals in one population are in

symbiosis with individuals of another population.

The symbiosis between any two individuals can be broken down then into a more

specific description as:

Definition 3 (Symbiotic Connection) A −→ B (A affects B) between two individuals

A and B exists if and only if the fitness of A has a direct effect on the fitness of B.

Definition 4 (A
+−→ B) (A protaganizes B) if and only if there exists a connection A −→ B

such that as the fitness of A increases, the fitness of B increases, and as the fitness of A

decreases, the fitness of B decreases.

Definition 5 (A
−−→ B) (A antagonizes B) if and only if there exists a connection A −→ B

such that as the fitness of A increases, the fitness of B decreases, and as the fitness of A

decreases, the fitness of B increases.
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With these three definitions we can then explicitly define the different relationships

between individuals as being related to one of the following five relationships. Each of

these represent a symbiotic connection that are seen in nature, and also have practical

advantages to their being applied to optimization problems.

Definition 6 (Amensalism) occurs between two individuals, Host and Amensal, if and

only if Host
−−→Amensal and ¬(Amensal−→Host).

Definition 7 (Commensalism) occurs between two individuals, Host and Commensal,

if and only if Host
+−→Commensal and ¬(Commensal−→Host).

Definition 8 (Competition) occurs between two individuals, Competitor A and Com-

petitor B, if and only if Competitor A
−−→Competitor B and Competitor B −−→Competitor

A.

Definition 9 (Predation) occurs between two individuals, Predator and Prey, if and only

if Predator
−−→Prey, and Prey +−→Predator.

Definition 10 (Mutualism) occurs between two individuals, Symbiont A and Symbiont

B, if and only if Symbiont A
+−→Symbiont B and Symbiont B +−→Symbiont A.

Using these relationship definitions each program can be expressed specifically as a

type of coevolution. With that in mind we can coherently sort the different algorithms

into respectable groupings.

D.2 Implementation of Coevolutionary Algorithms

As the coevolutionary algorithms that we are exploring are based on the normal

evolutionary algorithm substructure we can directly incorporate many of the operators

from the algorithm we have chosen. Thus the genetic evolvers such as recombination and

mutation can be the same as they were in the standard EA. There are some changes that

do have to be made in order for the algorithm to function appropriately, this is primarily

seen in the fitness evaluation of the population members.
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Fitness Evaluations. Evolutionary algorithms are traditionally designed with a sin-

gle objective, single species approach. By this I mean that there is only one population

composed of like individuals (individuals that share the same encoding) that are all opti-

mized based on a single objective function. Thus if two solution vectors ~a and ~b existed

in the population such that ~a = ~b, then their evaluation in the fitness would be equivalent

(given a discrete fitness function, f(~a) = f(~b)).

In a coevolutionary algorithm this changes. The encodings might still be the same, ie

~a = ~b, but their finesses might turn out to be different based on what fitness evaluation each

vector is made to undergo, so that it is quite possible that f1(~a) 6= f2(~b). Other encodings

could have multiple different populations, each normally called a separate species. There

is a large variety of these different encoding designs, and it is important to examine the

benefits associated with each.

As there is no free lunch for normal evolutionary algorithms the same holds true

for the coevolutionary arena [84]. There is therefore a vast range of possible algorithms

which can and are applied to different coevolutionary problems. The design that is chosen

would require the engineer to understand the problem domain and apply the appropriate

biological symbiosis between the algorithms for the program to be effective.

Whereas a standard evolutionary algorithm commonly uses a discrete fitness based

solely on the evaluation of an individual. A coevolutionary algorithm commonly uses what

is known as a competitive fitness function (CFF) [3]. A CFF occurs when the fitness of

an individual is calculated based on trials where the individual is matched against other

members of the population(s). The results of these trials then move the evolution of the

population towards some optimal goal.

Different implementations of the CFF trials exist, they differ based on the selection

of the members that are being compared and are thus classified as such[56].

Definition 11 (All vs All) CFF’s match every individual from the population(s) against

every other individual [4].
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Definition 12 (Random Competition) selects a fixed number of random population

members for competition against the individual being examined [60].

Definition 13 (Tournament) competition ranks the fitness of the individual by single

elimination one-to-one tournaments [3].

Definition 14 (All vs Best) competition tests the individual singly against the currently

best individual in the population [41].

This is of course not an exhaustive list as other examples of methods of selecting

competitions can be made using any selection technique, these are simply examples of the

selections done from literature.

The competitive fitness evaluation of the coevolutionary algorithm can be easily

compared to the ranking necessary for a Pareto multiobjective algorithm. In a Pareto

multiobjective algorithm the program tries to optimize multiple different objectives simul-

taneously. Since not all objectives can be optimal at the same time, a tradeoff of objective

finesses is made while maintaining that the each objective reaches their fullest possible

value given the tradeoff. To determine which solutions are best for some tradeoff each

solution vector is ranked. This ranking must examine each solution vector against ev-

ery other solution vectors relative fitness to determine its rank in the population. This

approach corresponds directly with the All vs All approach.

Population Modelling. Their are many different manners by which a coevolutionary

system can have the different population species coexist. These implementations depend

on the available computer resources, and of course on the approach by which the problem

is undertaken. The basic form of population decomposition is to use a sequential program

whereby each population is evolved to the point where interaction is necessary between

the populations. At this point the finesses are calculated and the evolution proceeds.

A simple distributed conversion of this method is to let each processor evolve the pop-

ulation till the interactive fitness calculations are made. This model is sometimes referred

to as a form of the island model of evolutionary computation because each population is

evolved in isolation with communications made infrequently between populations.
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Yet another model, would be to use a distributed system where each of the pop-

ulations are spread out over a grid, interactions can then occur locally. This model is

normally labelled a fine-grain parallelization, and it has the benefit of making inter-special

communication possible within local groupings of the system [40].

D.3 Coevolutionary Algorithm Examples

The number of applications which take advantage of coevolutionary algorithms is

ever increasing. While GA’s are commonly used as the primary backbone for which the

coevolutionary structure is applied it is not uncommon for other styles of evolutionary

algorithms to be used [37].

Immune System. An Artificial Immune System (AIS) uses the fundamental elements

of a human immune system in order for optimizing systems in which some type of pattern

matching is required. Perhaps the primary realm for which AIS’s are implemented is

for computer security, for example AIS are used for Computer Virus Detection, where

computers are examined for self versus non-self items resident in the computer’s memory.

In an immune system there exist two basic units, the antigens and the antibodies.

Antigens are defined as foreign material that should not be in the body; bacteria, viruses

are two primary examples. Antibodies are the detector cells that can distinguish between

material that is supposed to reside in the body (self) and material that is foreign (anti-

gens). In each individual there are numerous different antibodies that exist, each detecting

different strains of antigens. When detection occurs the body goes through a phase called

clonal expansion by which the antibodies are duplicated in mass. This large concentration

of antibodies then overwhelms and neutralizes the antigen [21].

Another useful feature of the immune system is its memory. When antibodies undergo

a clonal expansion the body remembers what the pathogen was. Thus, if another invasion

by that antigen does occur, the body can quickly produce the appropriate antibodies to

stem the infection. In biological terms this memory is called the immunological memory.

When converting this system from the biological to the electronic these principles

become amazingly useful as an adaptive system for pattern recognition. The principles of
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antibody responses and clonal expansion relate (in their simplified forms) to the matching

of patterns within a system and the dynamic creation of more strings for recognizing a

greater number of patterns. The memory of the immunological information is analogous

to the memory of the patterns. For example, in the virus detection system, immunological

information would be the history of all viruses found to date [21].

Clearly this is a realm of computer algorithms that is prime for coevolutionary adap-

tation. There are actually many different features of immune systems that can be modified

to work using a coevolutionary scheme. Perhaps the most obvious adaptation would be to

use a competition strategy between the antigens and the antibodies. In this manner the

population of antibodies would develop for better matching of the antigen strings. The

antigens would then develop for improvement on stumping the antibodies.

Another approach would be to have two populations, one of antibodies, one of helper

T-cells (or even other antibodies) Helper T-cells aid the antibodies for detecting antigens.

Using this idea the helper T-cells would develop in a mutualistic relationship with the

antibodies, providing extra data for matching the antigens.

One example of the use of a coevolutionary immune system is for evolving antibodies

for concept learning [57]. This research investigation uses a genetic algorithm and a binary

schema representation where self is the negative examples and the positive examples are

likened to antigens. The coevolutionary approach used here is implemented for the goal

of maintaining genetic diversity with multiple antibody populations and a mutualistic

collaboration. What happens is that the antibodies seek out the non-self positive learning

examples and stores the information. This continues until all the foreign molecules and

none of the self are recognized, thus having stored a full concept picture.

Genetic Programming and Predation. A classical example of a predation relationship

in biology is the relationship of a predator and prey. A simple example of a pack of wolves

hunting a deer can be used to understand the problem. Using this example the wolves,

being the predators, have the objective of capturing the deer and the deer has the objective

of escaping the pack of wolves.
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One implementation of this experiment is done using a strongly typed genetic pro-

gram (STGP) [37]. A genetic program uses the biological operators (most notably that of

mutation) to generate an executable program based on a listing of terminals and functions.

The terminal set for this implementation consists of the agents in the system (both the

predators and the prey). The function set consists of commands for moving the agents

around the 2-D grid world as well functions for comparison (ie. less than and if then else

clauses).

The reason why it is a strongly typed genetic program is that all of the constants,

terminals, variables and returned values can be of any type [37]. This is done with the

use of generic functions that can accept and return data of any generic data type. The

reasoning behind this is to ensure that all operations can construct valid programs.

This problem is divided into two distinct problems. First, the problem of interaction

and cooperation of the predators is examined [37]. That is done using a prey that randomly

moves around the board without any direction. Since this is not realistic and in order to

make the problem a bit more difficult for the prey, experiments are then made for the

coevolution of the preys movements instead of the simple random movement [36].

In the first implementation the STGP moves all members of the board simultaneously.

The goal of the predator agents is to surround the prey, thus immobilizing it. The predators

are allowed to ”see” the prey, but not each other, they can however bump each other if

they try to occupy the same location on the grid. The program that is evolved is used by

all predators.

The basis for fitness of the capture strategy in this program is a weighted point

system where the highest weight is given for capturing the prey. Since it is not always

guaranteed that the prey is captured other measurements for fitness evaluation were also

included. Second to the actual capturing and encirclement of the prey was adjacency to

the prey, this made the program favor predators being close to circling the prey. Finally

the last and least weighted term was that of proximity for those that are near but not

adjacent to the prey [37].
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The next generation of this program is where the real coevolutionary predation algo-

rithm occurs. The predator agents use the same method as described above for generating

programs for their decisions, but this time the prey turns from the random movement to a

decision process based on its own GP. Initial results found that the predator language had

to be expanded because the prey systems were too effective at avoiding the predator, thus

they expanded the implementation to allow them to see each other. Even this improvement

is no match for the prey’s simple yet effective evasion algorithms.

Genetic Algorithms and Symbiosis. Not all coevolutionary systems are as direct and

easy to recognize as those of the immune system (Section D.3) or the predator and prey

GP (Section D.3). Some implementations simply have two or more coexisting coevolving

populations that interact only in the workings of the program. A good example of this is

Michaelewicz’s GENOCOP III [50].

GENOCOP III is a generic genetic algorithm (GA) that uses two populations, one

for search the other for reference. The evaluation of the search population depends on

the current reference population. The reference population is the created based off of the

search population, but its evaluation is independent. This results in the system being a

commensal arrangement.

Applications of this program are extremely diverse. One application was for the de-

sign of wire-antenna design [76]. An extension of this project was also done for using Pareto

optimization along with the coevolutionary structure for finding the antenna geometries

along the entire Pareto front.

Meta-EA. Meta-EAs work differently than the standard coevolutionary system. Most

coevolutionary systems have interactions between all populations. In a meta-EA the in-

teractions only go one way, the meta-EA optimizes the operators and parameters for the

sub-EA, and the sub-EA uses these parameters and operators to optimize the problem

being examined. Using definition 2 all a system needs in order to be coevolutionary is a

fitness based on a population other than the one being evaluated. With this definition the

Meta-EA is coevolutionary and the interaction can be described as commensalism.
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Perhaps the most developed research into multilayer programs was done by Gang

Wang et. al and the work done for the DAGA2 [80], [79], [81]. The DAGA2 system

optimized not only the objective being examined for some problem domain, but also the

system in which the individuals were being evolved in. They used a recursive encoding

approach, such that there could be any number of meta-level algorithms as the user wanted

to implement.

The goal of the DAGA2 project was to try to overcome the No Free Lunch theorem

[84], [80]. They had the meta-GA select the operators for selection, crossover, and mutation

and the parameters and probabilities for each. The fitness of the meta-GA was then

based on a combination of best fitness of individuals in the sub-GA, average fitness of the

individuals in the sub-GA, number of fitness function evaluations of the sub-GA, and a

measure of population diversity in the sub-GA.

The sub-GA ran with the parameters as specified by the meta-GA. It’s fitness was

based directly on the problem domain, and was not influenced by any of the results of the

meta-GA. Being that it is a one sided fitness relationship, we call it commensalism.

D.4 Summary

The coevolutionary algorithms are a powerful and diverse use of biological models for

interacting populations. The results found by coevolutionary algorithms are many times

unexpected and of higher quality than could be found with standard EAs and standard

fitnesses [37].

By using interacting populations programs are able to build on each other to find

solutions that may not have been thought of otherwise. There are a variety of different

interactions that can be used based on the system that is being modelled and the popu-

lations that are chosen to interact. Using these interactions fitnesses must be calculated

based on the performance of not only the population being evaluated but on the other

populations in the system- this is what makes it coevolutionary.
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Appendix E. Multiobjective Algorithm Testing

To validate the multiobjective part of the program, multiple benchmarks are executed

using the modified GENOCOP III code. Van Veldhuizen’s MOP1, MOP2, MOP3, MOP4,

and MOP6 are run with the parameters set as specified in Table E.1 [73]. The appropriate

modifications are made to the number of variables, number of domain constraints, and

optimization type based on the specifics of the problem.

To indicate the functions being tested, the problems are listed in Table E.2. MOP1,

MOP2, MOP4, and MOP6 all have closed-form solutions and thus can be compared to the

values resulting from the real-valued GA using metrics such as generational distance (see

E.1). MOP5 and MOP6 were chosen for their convoluted nature, thus testing the ability of

the modified GENOCOP III to adapt to more difficult problems than MOP1 and MOP2.

E.1 Multiobjective Metrics

Three metrics are chosen for examining the effectiveness of GENOCOP III for solving

Pareto multiobjective problems. They are generational distance, overall nondominated

vector generation (ONVG), and spacing [75].

Generational Distance calculates the distance that the calculated Pareto Front (PFknown)

is from the true Pareto Front PFtrue. The equation for generational distance is

G , (
n
∑

i=1

d2i )
1/2/n (E.1)

Reference Population Size 50
Search Population Size 50
Number of Operators 10
Total Number of Evaluations 5000
Reference Population Evolution Period 50
Number of Offspring for Ref. Population 50

Table E.1 GENOCOP III initialization for MOPs
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MOP Definition Constraints

MOP 1 F = (f1(x), f2(x)), where

f1(x) = x2,

f2(x) = (x− 2)2

None

MOP 2 F = (f1(~x), f2(~x)), where

f1(~x) = 1− exp(−
n
∑

i=1

(xi −
1√
n
)2),

f2(~x) = 1− exp(−
n
∑

i+1

(xi +
1√
n
)2)

−2 ≤ xi < 2

MOP3 Maximize F = (f1(x, y), f2(x, y)), where

f1(x, y) = −[1 + (A1 −B1)2 + (A2 −B2)2],
f2(x, y) = −[(x+ 3)2 + (y + 1)2]

−3.1416 ≤ x, y ≤ 3.1416,

A1 = 0.5 sin 1− 2 cos 1 +

sin 2− 1.5 cos 2,

A2 = 1.5 sin 1− cos 1 +

2 sin 2− 0.5 cos 2,

B1 = 0.5 sinx− 2 cosx+

sin y − 1.5 cos y,

B2 = 1.5 sinx− cosx+

2 sin y − 0.5 cos y

MOP4 F = (f1(~x), f2(~x)), where

f1(~x) =
n−1
∑

i=1

(−10e(−0.2)∗
√
x2i+x

2
i+1),

f2(~x) =
n
∑

i=1

(|xi|0.8 + 5sin(xi)
3)

−5 ≤ xi ≤ 5; i = 1, 2, 3

MOP6 F = (f1(x, y), f2(x, y)), where

f1(x, y) = x,

f2(x, y) = (1 + 10y) ∗
[1− ( x

1+10y )
α − x

1+10y sin(2πqx)]

0 ≤ x, y ≤ 1,

q = 4,

α = 2

Table E.2 MOEA test functions
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where n is the number of vectors found for PFknown, di is the Euclidean distance between

each PFknown vector and the closest PFtrue vector. Optimally the result of this would be

0 meaning that all vectors found are on PFtrue.

ONVG is a calculation of the amount of unique nondominated vectors found by the

algorithm. Mathematically speaking it is

ONV G , |PFknown| (E.2)

This metric helps examine how effective the algorithm is for enumerating potential solutions

that the decision maker can choose from. It gives us no information concerning if the results

are along the Pareto Front, nor if they are spaced evenly among the search area, only how

many of these vectors exist.

In order to examine how evenly spaced the solutions found are along the solutions

surface a metric called Spacing is used. The equation for spacing is

S ,

√

√

√

√

1

n− 1

n
∑

i+1

(d− di)2 , (E.3)

where di = minj(| f i1(~x) − f
j
1 (~x) | + | f i2(~x) − f

j
2 (~x) |), i, j = 1, . . . , n, d is the average for

all di. Again the smaller the value the more equidistant the points are in the found Pareto

Front, optimally we want a value of 0 for this metric.

The use of all three of these metrics allows a statistical analysis of how effective

the GENOCOP III implementation would be at finding good solutions for multiobjective

problems. From ONVG we have how many solutions are found, spacing tells us how well

distributed they are, and generational distancing tells us how good of a solution they are.

Each individually gives a small picture of the overall success, when looked at together we

have a much better picture of how effective the program is.

Statistical Techniques The benchmarks are each be run 50 times. Once run the

three metrics of generational distancing, spacing, and ONVG are applied. The mean and

standard deviation for these runs are then found. These results are then be compared
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Mean Std Dev Confidence

Spacing 0.097579 0.102171 .002832

ONVG 482.98 673.608 186.7109

GD 0.015358 0.014987 0.004154

Table E.3 MOP1 metrics

with other competitive algorithms, so that a comparison of algorithm performance can be

made.

E.2 MOP Results

Each benchmark is initialized using the parameters specified in Table E.1. Each

MOP is run 50 times, and the results were stored. Metrics were then applied with results

as seen in Tables E.3, E.4, E.5, E.6, E.7.

When examining these results it is important to remember that GENOCOP III

operates with real-value results while all the found pareto optimal set is determined for

a binary representation. In this manner the results become hard to analyze due to the

inability to directly compare results.

The results of MOP1 (Table E.3) shows a good spacing across the true Pareto front.

It would be better to have the spacing a little closer to 0, but due to the fact that niching

is not applied to the program this result is understandable. The ONVG gives a reasonable

amount of points found on for our PFknown. This in reality, since we are dealing with

real a real-value EA, would be an uncountably infinite amount of points along a curve.

Figure E.1 also helps for visualizing how close the found Pareto optimal points are to

the true Pareto front. The close proximity that is seen by the graph is also displayed

through the generational distance metric. This metric is slightly biased due to the fact

that the GENOCOP III uses real valued loci and the true Pareto front is enumerated only

at discrete points, overall this metric is small enough a value to confirm that we have found

a true Pareto front.

The results of MOP2 (Table E.4) have a better spacing than MOP1. The results

here are more equally spaced along PFknown. The ONVG would also be an uncountably

infinite number for this problem due to the real-valued implementation. Once again, the

E-4



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4
MOP 1 PFtrue vs PFknown

O
bj

ec
tiv

e 
2

Objective 1

PFtrue
PFknown

Figure E.1 MOP1 comparison of the known Pareto front with the true Pareto front.

Mean Std Dev Confidence

Spacing 0.066792 0.02829 0.007841

ONVG 35.08 24.94389 6.91395

GD 0.041556 0.024319 0.006741

Table E.4 MOP2 metrics

generational distance shows that we are very close statistically to the true Pareto front.

Graphically this is shown in Figure E.2.

For MOP3, MOP4, and MOP5 the problems become increasingly more difficult, with

different isolated solution ranges. As such the ONVG decreases for each of these problems.

All three problems have solutions that are at or approaching PFtrue with MOP4 showing

the most distant solution vectors. The same problems with regards to discrete vs real-

valued solution comparisons applies to these problems as they did with MOP1 and MOP2.

However due to the broken PFtrue for these problems and the solution spacing as shown

we can see that the GENOCOP III algorithm does allow for exploration to various parts

of the search space and does not niche its solutions into only a single region.

Mean Std Dev Confidence

Spacing 3.054004 1.260047 0.34926

ONVG 67.22 113.2785 31.39857

GD 0.723588 0.688085 0.190724

Table E.5 MOP3 metrics
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Figure E.2 MOP2 comparison of the known Pareto front with the true Pareto front.
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Figure E.3 MOP3 comparison of the known Pareto front with the true Pareto front.

Mean Std Dev Confidence

Spacing 1.259353 0.525099 0.145547

ONVG 12.02 5.164597 1.431525

GD 1.378669 0.685502 1.90008

Table E.6 MOP4 metrics

Mean Std Dev Confidence

Spacing 0.871082 0.743527 0.206091

ONVG 8.8 5.283783 1.464561

GD 1.72786 1.492503 0.143693

Table E.7 MOP6 metrics
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Figure E.4 MOP4 comparison of the known Pareto front with the true Pareto front.
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Appendix F. Parallel Evolutionary Algorithm Approaches

There are a many different types of parallelized EAs. Some parallelization schemes have

single populations, others have multiple independent distributed populations. Each type

should be examined with respect to its overall benefits to different applications. The

literature has typically defined three main classes for parallelized EAs[10]:

• Global Single-Population Master-Slave

• Single-Population Fine-Grained

• Multiple-Population Coarse-Grained

An examination of each allows an understanding of the advantages and disadvantages

and permits an optimal selection for our particular distributed system.

F.1 Global Single-Population Master-Slave

A global single-population master-slave EA (also known as a micro-grain EA) uses

a single panmictic population evolved by a single master processor that sends to each

slave process the chromosomes to be evaluated [10]. Thus all of the genetic operators

are controlled by the master process and the other processors are only responsible for the

evaluation of the different potential solutions.

The primary advantage to this type of approach is that it is basically equivalent to a

serial EA, with only the evaluations ported to outside processors. This makes it a relatively

easy matter to distribute the EA. However, it’s being equivalent to a serial approach does

prevent it from helping to be effective against premature convergence. With regards to the

parallel communication each processor must communicate solely to the master processor.

This creates a bottleneck to the system in that this approach is heavily dependent on the

communication ability of the master process.

F.2 Single-Population Fine-Grained

A fine-grained EA also has a single massive population. This time though, as opposed

to the master-slave approach, the entire population is distributed across the processors.
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The processors then are allowed to communicate with other processors only within prede-

fined neighborhood regions. Thus selection and genetic operators are constrained such that

they only work on population members within each specific neighborhood. This approach

does allow for some genetic diversity in that the neighborhoods are allowed to overlap

between each other.

Because of the manner which the neighborhoods interact each neighborhood is al-

lowed to explore its own region of the search space. The communication via the overlap-

ping areas of the neighborhood allows for genetic diversity amongst the different popula-

tion members. Since only the outer regions of each neighborhood can communicate with

other neighborhoods genetic information is slowed from being passed to all members of

the population. This effectively reduces the chances of global premature convergence [69].

The amount of connections between each neighborhood thus is extremely important. If

the neighborhoods are too highly connected the genetic flow is too fast, if they are too

sparsely connected then the flow is too slow.

F.3 Multiple-Population Coarse-Grained

A multiple-population EA (also known as a multiple-deme EA) consist of a single

master processor that controls the execution of several subpopulations across the slave pro-

cessors. Typically this is designed such that each slave process has a single subpopulation.

As opposed to the grey area for overlapping neighborhoods of the fine-grained model, the

coarse-grained approach has each subpopulation as being distinct and autonomous. Thus,

migration between different populations must be explicitly handled for this approach. This

model of parallelization is similar to the island model of distributed algorithms.

Because of the infrequent communication between unique populations this type of

parallelization allows for an increased coverage of the search space. With a single popula-

tion EA’s tend to converge whereby the generated chromosomes do not have much change

from their parents. With the different populations the algorithm can explore different re-

gions of the search space each with a sporadic genetic injection occurring when members

of the surrounding populations transfer some of their solutions to their neighbors, thus

increasing the diversity of each population.
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From a parallel point of view this approach does not have the communication bot-

tleneck that the micro-grain EA has. It also allows for single point to point contact, as

opposed to the communication within neighborhoods that the fine-grain approach does.

However, with this benefit comes more options on how to migrate between the subpopu-

lations.

Another method of parallelization is to use synchronous island migration. With this

type of policy each of the subpopulations evolves to a point and then they all transfer at

the same time. This only works for populations that are ensured to evolve simultaneously.

One way around this problem is to make the EA asynchronous. With an asynchronous

model each subpopulation transfers genetic material only when they individually deem it

worthwhile. Unfortunately this too has a disadvantage in that with this approach typically

only the high fitness members are distributed. This is not a problem until you realize

that the high fitness chromosomes are typically too different from the already developed

subpopulation that they were sent to that they do not help move the search [69].

F.4 Complexity Analysis

The algorithmic complexity of an evolutionary algorithm is equal to the amount of

evaluations that must be performed by the algorithm. Thus if we set tmax as the maximum

amount of evaluations that the algorithm must perform we would have a complexity of

O(tmax). As long as this number is relatively low this algorithm is efficient. As we increase

this number the effectiveness increases, but the efficiency decreases. The only good thing

is that the efficiency decreases linearly. Thus even with a large amount of evaluations we

still have an algorithm that is relatively faster than some of the deterministic approaches.

For a general evolutionary algorithm the serial time to complete the execution is

proportional to the amount of executions the algorithm is to perform Ts ≈ k · tmax. When

comparing it to a coarse grain parallelized version we assume as a worst case that each

individually parallelized EA executes the same tmax evaluations. Thus our parallel runtime

would be as given in Equation F.1. The first item on the right hand side represents the work

actually done by the individual EA’s, the second represents the startup time required to set

up each processor for the EA’s, and the third represents the time necessary to communicate
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the good chromosomes between the different populations (assuming it is done only once

per generation of the children). Asymptotically this is O(tmax).

Tp = tmax + p · ts + tw ·
tmax
λ

(F.1)

An examination of the speedup as shown in Equation F.2 shows that we, as expected,

do not gain any speedup from parallelizing in the coarse grain manner. Even though we

do not gain any speedup we must remember that by parallelizing the EA we are allowing

for a fuller examination of the search space, thus generating a more effective solution set.

Our efficiency of the algorithm thus is 1/p showing that our implementation is not cost

optimal.

S =
tmax
tmax

= 1 (F.2)
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Appendix G. Parallel Implementation

In GENOCOP III implementation each execution of the meta algorithm generates a text

file containing the parameters for executing the sublevel algorithm. When the modified

GENOCOP III(MOGENO) system is started, the algorithm must ensure that each pro-

cessor receives its own unique file so that no two processors compete for file resources.

This arrangement is beneficial to the coding in that minimal information must be directly

sent from the control processor to the slave processors. Its primary disadvantage is the

communication time necessary for file I/O for each file in the system.

Unfortunately we cannot escape this problem. The way that the overall system has

been built each of the EA’s are themselves independent of the others. Thus when the

allocation EA is run, it does so as if there doesn’t exist any meta-level EA. By doing

this we create transparency for the overall system. This also allows us, to incorporate this

algorithm into a GUI front end so that it can be used by a distributed system administrator

for allocating processes, without having to deal with the meta algorithm.

Load balancing of this algorithm occurs automatically. Each of the meta-algorithms

are executed with the same basic parameters, changing only the random seed so that

they can explore different regions. Thus every processor has it’s own full version of the

MOGENO algorithm executing on it. The only processor that does not participate in this

is the master processor, which is used for bookkeeping and control of the slave processes.

Synchronization of the different slave processors occurs via the master processor

at the beginning and end of the execution. Once the master processor has set up and

transmitted all of the necessary data structures to the different slaves then each of the

slaves are allowed to begin. Synchronization at this point is crucial in that the slaves

cannot be allowed to begin execution until after the master processor has generated the

necessary files that each processor requires for execution. During execution, since each of

the processors are running their own unique version of the EA synchronized communication

is not viable. For transmission of migrating chromosomes an asynchronous nonblocking

transmission occurs, such that once a new chromosome enters the system it is allowed to

enter the population.
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The migration policy is based off of a logical ring, such that each population transmits

a single Pareto non-dominated member, randomly selected from the Pareto known set.

This selection occurs at the end of each reference population generation. The selected

individual is then transmitted to the populations ranked one higher and one lower on the

logical ring.

For this algorithm the only communication that is necessary is from each processor

to the processor ranked higher and lower than it. In this manner we hope to allow a slow

migration of members between the populations. Of course we have wrapping whereby

those processors that are ranked first and last (not including the master process) transfer

to each other as well as their standard neighbors.

G.1 Implementation Protocol

This implementation is done using MPI commands. We use both blocking and non-

blocking communication protocols to transfer the data. Every send command is done using

a blocking command so that the information could be sent prior to it being modified. We

use non-blocking receive commands in order to pull the data when migrating so that we

don’t’t have to make all of the processors wait for algorithm to finish.

In comparison with some of the other protocols available for use in this implementa-

tion (mainly Java RMI, and C sockets) we decided that MPI is the most suitable. First of

all this program is written in C, thus a Java interface would add unnecessary complexity

to the implementation. Beyond this, if we use RMI we would have to set up the pro-

gram such that the EA itself is a remote method. We would then have to call the remote

method from some control system. That would allow us to have the program distributed.

As for communication between the different EA populations (migration) we would have

to implement a separate communication structure (another RMI interface, or more likely

direct sockets) that would communicate between the different EAs running. Overall this

approach would be unnecessarily complicated because of all of the overhead control that

would need to be implemented so that each RMI instantiation of the program would know

how to communicate with it’s neighbors.
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Sockets, being that they use the same fundamental layer as RMI, are not much better.

If we used a socket implementation for this program then we would have to have a very

specific, and potentially static, amount of processors. We would then have to set up each

processor individually so that it could be the client/server as needed. This would involve a

lot of overhead time for no relative improvement. This approach also has the downside of

the intra-processor communication in that we would have to specifically encode into each

separate EA instantiation what processors it must communicate with in order to migrate

individuals.

That leaves us with using MPI for this project. MPI is implemented in C and thus

can be incorporated directly into our algorithm. It has the advantages that we do not need

to set up each individual implementation for every processor. Instead we create our single

executable and it ports itself to the different processors. It then executes on the different

processors as coded.

With MPI we also have an efficient way of identifying processors as being neighbors.

MPI uses a built in ranking system, thus for our implementation we can consider each

processors neighbors as being the processors with a rank one higher or one lower. Since

we know the rank of these processors we can simply communicate to them using the built

in MPI calls. With this approach MPI makes HPC programming much simpler than some

of the alternative methods.

G.2 Scaleability

Since the GENOCOP III system has a worst case serial performance of O(t2max), we

can set that as our serial time for a single execution, thus ts = t2max. We can use the number

of evaluations as our measure of the time of the system since it’s amount determines the

actual runtime of the system. When we are considering a parallel execution we have a

serial time of p times the serial time of a single execution, because for our implementation

we run p individual executions when executing in parallel. For calculating the parallel run-

time (tp) we must consider not only the time to do work(W ) but also the time necessary

for the startup of the system, and the time necessary to communicate individuals between

the different populations.
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The time necessary to do the work on the parallelized version of the EA is no different

from the serial one, except that it is now distributed, thus while a comparable serial version

takes p(t2max), we can do the same amount of work in parallel with only p(t2max)
p = t2max.

The startup time for this system involves the initial setup of the different EA’s. Since

there are p − 1 EA’s to be set up our setup time is ts(p). Finally, the time to transfer

information between the different system is based on a transfer of a single Pareto non-

dominated chromosome once every time through the reference population. Since we have

a maximum of tmax evolutions of the reference population the total communication would

be tw(tmax). Thus our total parallel runtime can be expressed as Equation G.1. Thus the

time complexity for this parallel algorithm is O(t2max) and thus cost optimal.

Tp = t2max + p · ts + tw · (tmax) (G.1)

With this equation we can calculate the exact speedup of the parallelized version.

Speedup is defined as the ratio of serial time to parallel time or Ts

Tp
. Since the time order

complexity of the serial implementation is O(p(t2max)) and the parallel implementation is

only O(t2max) our speedup is then given by Equation G.2.

S =
p(t2max)

t2max
= p (G.2)

With this speedup we can calculate the efficiency. Efficiency is given as the ratio of

the speedup over the number of processors executing the algorithm. With p processors

executing and a speedup of p we have an efficiency of O(1). Thus by definition we have a

cost optimal system.

Finally we get to the isoefficiency function. The isoefficiency function determines

the actual scalability of the system. If we let K = E/(1 − E) then the isoefficiency can

be calculated as W = KTo(W,p) where To(W,p) represents the overhead time given as a

function of the work (W ) and the amount of processors (p). To(W,p) can be calculated as

the amount of time that is not directly affected by work or pTp −W . Thus for our system
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since we have a work of W = p(t2max) the overhead time is given as

To = (p(t2max) + p2 · ts + p · tw · (tmax))− p(t2max) (G.3)

To = p(p · ts + tw · (tmax) (G.4)

We then examine each of the remaining terms individually. First examining the term

based on the system startup we have W = Kp2ts. For the communication time we have

W = p(t2max) = Kptwtmax, eliminating the right hand side tmax term we haveW = K2ptw.

Thus between the two function the overall asymptotic isoefficiency is asymptotically equal

to O(p2). This is clearly not a linear isoefficiency, thus showing that the system is poorly

scalable.

The only problem with the above calculations is that they are not fully telling about

the reality of the system. In actuality we do not yet have a full understanding of what

percentage of tmax the parallel system requires to execute so that it would provide results

comparable to the tmax evaluations of the serial algorithm. Currently for these experiments

we do not run (p − 1)tmax evaluations of the serial algorithm. We do run that lessened

amount of evaluations of the parallel algorithm, simply because we have no knowledge of

what percentage of the serial algorithm each subpopulation needs to run. Doing the same

metrics based on the idea that the serial run is only run one time, as opposed to p, we

have the same Tp, but our speedup becomes equal to 1, making our efficiency equal to 1/p.

Our isoefficiency remains at O(p2).

This shows that evolutionary algorithms are non-scalable algorithms. Whereas you

can add as many EAs to a system as you would like, as long as you keep the number of

evaluations constant you do not gain any performance improvement. On the other hand,

research efforts have shown that by parallelizing the algorithm it is possible to decrease

the amount of evaluations per population and find improved results over a serial EA. It is

this ratio of how many populations to evaluation size that needs further examination with

respect to the EA community.
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EA’s cannot in themselves be parallelized too easily. Typically the only item that

can be parallelized is the evaluation function, this is the basis for the master-slave model.

The problem with this parallelization is that the communication overhead necessary for

transferring that function out and returning the result can be overly costly for the overall

system. Thus, as shown in the diffusion and island models, typically the whole EA is sent

out for execution on individual processors.

Unfortunately, once you send the entire EA algorithm out, you lose any speedup

that would be gained by parallelizing the algorithm. Only by decreasing the number of

evaluations that the system has can we manage to decrease the overall execution time. As

has been shown in many previous papers [11] [9] a better solution can be found with a

smaller amount of evaluations per EA using a parallel system. Finding this ratio between

the amount of populations and the evaluations amount is therefore vital for increasing the

efficiency of parallel EA systems.

G.3 Parallel Meta Experimentation

Experimentation of the parallel meta-EA requires analysis of communication struc-

tures, processors differences, I/O structures, scalability. For all of this research investiga-

tion we use standard statistical analysis equations of mean, median, max, min, variance,

and standard deviation. We also use statistical T-tests in order to compare the means of

different results using the standard principles of statistical hypothesis testing[53]. While

we primarily examine the execution times of these results we also do examine the multi-

objective metrics of spacing and ONVG for as described in Section E.1.

I/O Impact In order for the allocation EA to be quickly deployed to a real world

environment the inputs concerning the hardware comparisons as well as the current sys-

tem state information and change request are all external inputs that are read in by the

Allocation EA during execution. For this reason there is a lot of disk I/O that is required

by each execution of the allocation EA algorithm. Since the meta-EA executes multiple

allocation EA’s for the parameter optimization a large amount of file I/O is required.
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The initial parallelization of the meta-EA used a shared disk access such that all

processors were competing with each other for read/write privileges across the network

and on a single drive. This created a deadlock situation that slowed the processors ability

to do the work needed. By trying to access the shared drive the processors also had to wait

for the delay caused by having to have the file data communicated across the network.

In order to solve this problem the processors were made to use the local hard drive.

This removed any deadlock due to waiting for other processors, it also removed any network

latency that is delaying the processors computations. As shown in the following hypothesis,

this experiment is based on statistically testing the average time (t) used by the meta-EA

to calculate a solution set using shared and local I/O constructs. For this experiment we

use the parameters as given in Table 6.3 and run each experiment 5 times on a simple 16

processor, 4 process experiment.

Hypothesis 5 The time necessary to do a complete run of the meta-EA is less using local

file I/O then using shared file I/O.

H0 : µt(shared[1])..t(shared[m]) = µt(local[1])..t(local[m])

H1 : µt(shared[1])..t(shared[m]) > µt(local[1])..t(local[m])

Communication Impact To test the communication impact on the parallelized meta-

EA we run the algorithm on four processors across both the fast-ethernet and Myrinet

backplanes. The processors for this experiment are all 1.0GHz Intel Pentium 4s so as to

provide the same computational capacity for each backplane type. The experiments are

run 5 times each using the parameters as given in Table 6.3 for a 16 processor, 4 process

system. Given that there is very limited communication necessary during the execution the

hypothesis is that there is not a statistically different time difference between the different

backplane experiments as shown:

Hypothesis 6 There is not a statistically significant difference between the fast-ethernet

and the backplane experimental times of the meta-EA.

H0 : µt(Fast−Ethernet[1])..t(Fast−Ethernet[m]) = µt(Myrinet[1])..t(Myrinet[m])

H1 : µt(Fast−Ethernet[1])..t(Fast−Ethernet[m]) 6= µt(Myrinet[1])..t(Myrinet[m])
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Processor Impact To test the processor impact on the parallelized meta-EA we run the

algorithm on four processors each on a AMD Athlon 1.7 GHz system and a Intel Pentium

4 1.0GHz system using a Fast-Ethernet backplane on both systems. The experiment is

run 5 times each using the parameters as given in Table 6.3 for a 16 processor, 4 process

system. Since the AMD is a faster chipset with a faster math processor it is expected to

have a faster overall time for execution.

Hypothesis 7 There is not a statistically significant difference between the fast-ethernet

and the backplane experimental times of the meta-EA.

H0 : µt(Athlon[1])..t(Athlon[m]) = µt(Pentium[1])..t(Pentium[m])

H1 : µt(Athlon[1])..t(Athlon[m]) > µt(Pentium[1])..t(Pentium[m])

Scalability Performance In order to examine how well this algorithm scales based on

number of processors, experiments are done using the parameters as given in Table 6.3 for

each of the systems as depicted in Table 6.1. These are run 5 times each and are examined

with respect to execution time, ONVG, Pareto dominance, and spacing. A comparison

between the different groups is also done to gain some understanding on how the program

scales with respect to the problem size.

For this experiment it is expected that the executions with the larger amounts of

processors has a better spacing with a larger ONVG and potentially more dominating

set of solutions. This is due to the fact that with the higher number of processors we

are effectively increasing the overall population size. This increases the amount of search

space that can be covered, allowing for better solutions. The overall runtime for these

experiments is expected to not be significantly different as they are still each running the

same basic EA on each processor.

Hypothesis 8 There is not a statistically significant difference between the experiment

running on few processors compared to one running on a large amount of processors with

the meta-EA.

H0 : µt(small[1])..t(small[m]) = µt(large[1])..t(large[m])

H1 : µt(small[1])..t(small[m]) 6= µt(large[1])..t(large[m])
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G.4 Parallelizability Analysis

I/O Results

Mean Time Std Dev

Shared 294840 n/a
Local 12913 513

Table G.1 The mean time differences for the meta-EA executed on shared and local file
systems.

The initial experiments with the meta-EA consisted of using the shared directory for

file storage. This created a bottleneck between processors attempting to read/write to files

as well as communications trying to access the directory. In order to alleviate this problem

the files were transferred to local directories so that each processor had control over it’s

own data set. This removed any problems occuring based on file read/write bottlenecks

as well as alleviating the problem of communication to the shared directory.

Another problems with having to transfer file data across the network is that the

algorithm is being subjected to the whims of the network load. At any given time the

network traffic could overwhelm the network and all of the processors would have to wait

until there is sufficient bandwidth to communicate with the file storage area. Since some of

the files are kept open throughout the execution of the algorithm, the overhead necessary

to maintain these ever growing files could in themselves overwhelm the communication

links. This in effect would cause a denial of service by the program itself.

As shown in Table G.1 the mean time for running the algorithm using the shared

directory is roughly 22.2 times as much as running the algorithm locally. Because of this

large time difference the parallel execution is not executed more than once.

Communication Results

Spacing ONVG Time

Communications 0.536193242 0.206151006 0.60971799
Processors 0.002530942 0.003834864 0.005711524

Table G.2 Student T-test probabilities based on comparison of Myrinet and Fast-
Ethernet (two-tailed test) as well as Intel vs Athlon Processors (one-tailed
test)
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Figure G.1 ONVG comparison for three platforms. The error bars represent variance.

Figure G.2 Spacing comparison for three platforms. The error bars represent standard
deviation.

Using a standard student T-test to calculate the P-values for comparing the samples

from the different communication backplanes we get results as shown in Table G.2. Since

all of the values are well above our alpha of 0.05 we must fail to reject H0 and thus conclude

that the all of the metrics are statistically equivalent. Thus there is no statistical difference

for running this algorithm using different backplanes, assuming everything else being equal.

These results are also shown in Figures G.2, G.1, G.3

Processor Results

When comparing the processors all of the P-values are less than our alpha of 0.05.

Thus we must reject H0 and conclude that the mean difference for all of our metrics are

statistically different between processors. For the first metric, that of spacing, we must

conclude that AMD Athlon system has the greater spacing. For the ONVG we must

conclude that the Pentium system has the greater ONVG. Finally for the metric of time

we must conclude that the Athlon has the higher time and thus is slower. Thus in all areas
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Figure G.3 Time comparison for three platforms. The error bars represent standard
deviation.

the Intel Pentium system has the advantage. This is not the expected result, and may

be due to the large amount of file I/O required by the meta-EA. The Intel chips have in

the past shown improvement over the AMD chips for dealing with file I/O problems. This

could be the case for these experiments as well.

Scalability Results

Figure G.4 Time comparison for different numbers of processors on Fast Ethernet, Intel
Pentium 1.0Ghz Systems running on a 16 processor 4 process experiment.
The error bars represent standard deviation.

The statistical results for the scalability of the 16 processor, 4 process experiments is

given in Table G.3. For this experiment we can see that the spacing between the problems

executed with 4 processors and the 8 processors are statistically equivalent. As shown by

Figure G.6, the variance of the experiment executed with 4 processors overlaps that of the

experiment done using 8. The experiment run on two processors is statistically greater

than the other two processor sizes, thus meaning that we are producing a better spacing
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Figure G.5 ONVG comparison for different numbers of processors on Fast Ethernet, Intel
Pentium 1.0Ghz Systems running on a 16 processor 4 process experiment.
The error bars represent standard deviation.

Figure G.6 Spacing comparison for different numbers of processors on Fast Ethernet, In-
tel Pentium 1.0Ghz Systems running on a 16 processor 4 process experiment.
The error bars represent standard deviation.

for the Pareto front when using the larger amounts of processors. This result is expected

as the larger processor amount relates directly to a larger amount of populations being

executed in parallel. Thus there are more chances of finding more regions of the Pareto

front.

When examining the ONVG for this problem the large variance by the execution

using 8 processors overlaps both with the 2 processor and 4 processor experiments (see

Figure G.5). Thus the ONVG for the 8 processor experiment is statistically equivalent

to these two experiments, as shown by Table G.3. However, the ONVG for the 2 and 4

processor experiments are not statistically equivalent to each other as there is no overlap

in variance.
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Spacing ONVG Time

2 vs 4 0.002182753 0.006790647 0.130872308
2 vs 8 0.001017604 0.343376341 0.075721249
4 vs 8 0.064575207 0.585314338 0.027376783

Table G.3 Student T-test probabilities based on comparison of different processor sizes
using a two-tailed test with an alpha of 0.05 and a 16 processor 4 process
problem.

The statistics concerning the time necessary for the different processor amounts shows

that the 2 processor experiment is statistically equal to both the 4 and 8 processor exper-

iments. As Figure G.4 displays the time necessary for the two processor experiment is in

the middle of the time necessary for the 4 processor and 8 processor experiments, with the

4 processor one being statistically lower (and thus faster) than the 8 processor experiment.

Figure G.7 Time comparison for different numbers of processors on Fast Ethernet, Intel
Pentium 1.0Ghz Systems running on a 64 processor 16 process experiment.
The error bars represent standard deviation.

Spacing ONVG Time

2 vs 4 0.004110467 0.000991679 0.000923467
2 vs 8 0.000405308 0.002895812 8.8629E-09
4 vs 8 0.000411025 0.009987842 0.288112704

Table G.4 Student T-test probabilities based on comparison of different processor sizes
using a two-tailed test with an alpha of 0.05 and a 64 processor 16 process
problem.

Table G.4 shows that the only statistic that is equal for the 64 processor 16 process

problem is that of time between the 4 processor and 8 processor experiments. As shown in

Figure G.7 for this experiment it again took longer to execute the 2 processor experiment

than either of the experiments using 4 or 8. As for the ONVG Figure G.8 shows that the
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Figure G.8 ONVG comparison for different numbers of processors on Fast Ethernet, Intel
Pentium 1.0Ghz Systems running on a 64 processor 16 process experiment.
The error bars represent standard deviation.

Figure G.9 Spacing comparison for different numbers of processors on Fast Ethernet,
Intel Pentium 1.0Ghz Systems running on a 64 processor 16 process experi-
ment. The error bars represent standard deviation.

4 processor experiment had the highest overall, followed by the experiment running 8 and

lastly that running on 2. As shown in Figure 7.3 the Pareto front for the larger amount of

processors dominates that found by the smaller amount, thus the smaller ONVG can be

attributed to a converging solution set. This is further shown by the decreasing spacing as

the processors increase (see Figure G.9), these are also statistically not equal.

For the experiment using a 128 processor 16 process problem we find that none of the

processor amount on any of the metrics are statistically equivalent (Table G.5). As shown

in Figure G.11 our ONVG increases as the processors increase, showing we are finding

more members of the Pareto front. In contrast to the 64 processor, 16 process experiment

our time also increases with amount of processors executing as given in Figure G.10.
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Figure G.10 Time comparison for different numbers of processors on Fast Ethernet, Intel
Pentium 1.0Ghz Systems running on a 128 processor 16 process experiment.
The error bars represent standard deviation.

Figure G.11 ONVG comparison for different numbers of processors on Fast Ethernet,
Intel Pentium 1.0Ghz Systems running on a 128 processor 16 process ex-
periment. The error bars represent standard deviation.

The spacing however is highest with the four processor experiment, and the 8 processor

experiment has a spacing just below that (Figure G.12).

The overall parallel scalability results show us that, in general, the solutions improve

as the number of processors increase. This is as expected since by increasing the number

of processors we are effectively simply increasing the number of populations. These pop-

ulations however do interact via migrations. The migration allows for the populations to

search a greater amount of the search space and thus find more dominant solution vectors.

With these more dominant solution vectors the Pareto front changes size. Because

the more dominant solutions pushes the Pareto front towards a smaller region of the

search space the solutions can have a large variety of different results for ONVG and

spacing. Typically we would expect a higher ONVG to occur as the number of processors

G-15

Meta EA Time D ilference on 128 Processor, 16 Procoss 
ExperiiiienI 

I^HAHU , , 
IQCOCO ■ 

-,2roco 

£   ecoco 
•-     QCOCO 

'i 2C0C0 

14                                            5 

Numb*r rn Proc*»ors 

Meta EA ONVG on 128 Processor, 16 Process Experiment 

12 

in 

s 
G 
i    B 
o 

4 

 1  

■^^^^ 
2 

0 
2                                                             4                                                            S 

Hjmber of Procesors 



Figure G.12 Spacing comparison for different amount of processors on Fast Ethernet,
Intel Pentium 1.0Ghz Systems running on a 128 processor 16 process ex-
periment. The error bars represent standard deviation.

Spacing ONVG Time

2 vs 4 0.000386934 0.000982802 0.00292996
2 vs 8 n/a n/a 2.33971E-07
4 vs 8 0.041403522 0.001608867 0.017735258

Table G.5 Student T-Test probabilities based on comparison of different processor sizes
using a two-tailed test with an alpha of 0.05 and a 128 processor 16 process
problem.

increase since we expect to find more solutions. However when we move to the more

dominant solutions we can very quickly remove old non-dominated solutions that have

become dominated, this decreases our ONVG yet the solutions are more dominant.

The same effect occurs to the spacing, however this metric can vary more readily.

When the overall dominance increases of the solutions set the solutions end up moving to

a smaller region. This pushes the solutions closer together thereby reducing their spacing.

Thus even with a lower ONVG we can still produce a lower spacing simply because the

Pareto front encompasses a smaller region of the search space with the more dominant

solutions.

As for the time required for each experiment, since the algorithm is a stochastic search

we cannot predict the exact runtime for any execution. The chromosomes generated might

require a great deal of time to execute or the might require a very small amount simply

on by the random selection of the chromosomes values. With this said we can make a

generalized statement that the chances for an extra long or extra short execution would
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occur for the larger amount of processor executions. Thus the executions using the 8

processors is expected to, on average, have the greater variance for runtime.

Solution Generation
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Figure G.13 Comparison of the individual processor Pareto fronts running a 16 processor
4 process experiment on four processors.

Another aspect that is examined is how the multiobjective parallelism works in terms

of generating an overall solution. Since there is only a limited amount of communication

between processors, and only at the conclusion of each generation the overall system does

not converge overly quickly. Each processor acts independently of the other processors and

thus is allowed to cover a different region of the Pareto front than the other processors.

This is shown in Figure G.13 whereby each processor covers a slightly different region of

the Pareto front, yet overlap among the processors does exist.
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Appendix H. Meta-EA Parameter Results

The parameters optimized by the meta-EA can be divided into three categories based on

their sizes. The first category, as shown in Figure H.1, contains those elements that are

greater than 100. The second category includes those elements that are boolean values

as shown in Figure H.2. The final category includes the operator frequencies as shown in

Figure H.3.

When examining these charts it is important to note that they are representing

the mean Pareto solution found. This point may or may not be feasible with respect to

providing an effective execution of the allocation EA. These graphs are more figures to

illustrate the comparative results that the different sized problems generated. The error

bars in these graphs represent the confidence interval based on the sample data. The full

statistical results of each of the different sized experiments are provided at the end of the

chapter. Overall the mean Pareto results appear to be statistically equivalent across the

different problem sizes.

Figure H.1 Parameter comparison for the large meta generated parameters.

In the large scale parameters chart (Figure H.1) the most noticeable trend is that

the reference population size is just slightly smaller than the search population size. This

is most likely due to the fact that the reference population is a background population

H-1

Pai3meterComna"isonrorLarc|eScJePararTie(efs.MeTaEfl 

3SXi 

Rdpiewe S««h PopiMilion Nufnbtrof HAienc* Nunhr Of Ok ping 
Popd J»n £d* Sbi EdlidiDfd PopuUPon Enhiioft        br fttL Pop. 

Ptnod 

Phsm^et 

■ 10 Proowod. 4Procn^«& mG^FiiycttuHt. laProocuci Dl28Proo»0B, 10 Proc«^^«s 



while the search population is intended to do the bulk of the searching. Another critical

element to examine is the relative period of reference population evolution with respect

to the number of evaluations. Overall the reference population evolution period is a little

more than half of the number evaluations, once again confirming the secondary nature of

the reference population.

Figure H.2 Parameter comparison for the boolean meta generated parameters.

Examining the binary parameters (Figure H.2) we again see that they all have over-

lapping confidence intervals showing they are statistically similar for the average Pareto

value. All of these values when executed are truncated to either 0 or 1 and thus must be

examined with respect to which value these confidence regions lean towards. The selection

of reference point for repair function has both the 16/4 problem and the 128/16 problem

statistically greater than 1 leading us towards using GENOCOP III’s ordered selection for

a general parameter setting. The 64/16 problem however is clearly overlapping 1 and thus

we cannot make any conclusions for this parameter. For the selection of repair for the

search population we again have elements crossing 1 and thus cannot make any distinction

as to what value they would be assigned in an average case. Finally the frequency control

parameter lies right around 1. Thus for this parameter we cannot statistically determine

which value to set this to for an average execution. This parameter again controls the need

for use of the frequency operators. Thus if the frequency operators are well tuned a priori
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to the Allocation EA execution there would be no need to use GENOCOP III’s frequency

distribution control mode.

Figure H.3 Parameter comparison for meta generated operator frequencies.

When examining the operator frequencies it is most important to note which param-

eters are used more than others. Examination of Figure H.3 shows that operators 3,4,5,6,8,

and 10 all have clearly overlapping confidence regions. The other operators have at least

one problem size that did not have overlapping confidence regions and thus we cannot

conclude that on average the mean operator frequencies are the same for these problem

sizes.
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Parameter 16x4 Mean Std Dev CI

Reference Population Size 389.5571987 236.2830866 57.88820677
Search Population Size 505.1765954 263.0779538 64.45281889
Number of Evaluations 1794.601749 928.6608601 227.517393
Reference Population Evolution Period 1086.310723 507.0554062 124.2261078
Number of Offspring for Ref. Pop. 145.527787 148.273022 36.3261691
Selection of Ref. Point for Repair 1.172122219 0.406705698 0.099640918
Selection of Repair for Srch Pop 0.822377266 0.591484159 0.144910742
Search Pop Replacement Ratio 0.390549578 0.223985202 0.054875285
Reference Pop Initialization Method 0.918721188 0.50532305 0.123801689
Search Pop Initialization Method 1.431812313 0.526420307 0.128970414
Freq Control Parameter 1.042669516 0.480504554 0.117721278
Operator 1 67.0803312 25.32745276 6.205102715
Operator 2 63.17349633 31.32962754 7.675606339
Operator 3 39.89091375 25.44859307 6.234781501
Operator 4 50.48289656 26.64996494 6.529111766
Operator 5 60.75908978 26.92922281 6.597528584
Operator 6 43.9275087 24.78033928 6.071062575
Operator 7 40.13147564 27.13531491 6.648020148
Operator 8 45.98876914 25.65930963 6.286406035
Operator 9 34.38797434 26.01208124 6.372833363
Operator 10 53.30268888 26.0999032 6.394349316

Table H.1 Meta-EA results for the parameters of the allocation EA for a 16 processors
4 processes system

H-4



Parameter 16x4 Max Min Median

Reference Population Size 942.445679 32.092625 325.603409
Search Population Size 890.102905 97.735191 488.150421
Number of Evaluations 2961.243896 41.922089 2161.337891
Reference Population Evolution Period 1924.893555 104.444801 932.302521
Number of Offspring for Ref. Pop. 626.132202 20 94.584648
Selection of Ref. Point for Repair 1.891008 0.052244 1.22514
Selection of Repair for Srch Pop 1.983171 0 0.842701
Search Pop Replacement Ratio 0.916667 0.001874 0.426046
Reference Pop Initialization Method 1.992726 0.009834 1.079954
Search Pop Initialization Method 1.9999 0.106553 1.631495
Freq Control Parameter 1.884826 0.055286 1.1660775
Operator 1 98.681847 8.657294 80.109917
Operator 2 100 0.058279 68.82626
Operator 3 97.560654 0.718009 36.577709
Operator 4 98.018188 1.096463 50.765741
Operator 5 98.545494 0 70.5926055
Operator 6 98.319336 0.007123 42.023636
Operator 7 91.266945 0.530638 32.385033
Operator 8 94.602661 0.47943 51.022148
Operator 9 85.407837 1.431936 30.652715
Operator 10 95.657799 5.698383 64.048286

Table H.2 Meta-EA results for the parameters of the allocation EA for a 16 processors
4 processes system
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Parameter 64x16 Mean Std Dev CI

Reference Population Size 378.469632 207.4256501 46.94391179
Search Population Size 486.9126663 313.6551585 70.98543544
Number of Evaluations 1836.856824 1059.75382 239.8401057
Reference Population Evolution Period 858.2391636 520.7044231 117.8441649
Number of Offspring for Ref. Pop. 258.1885503 234.3820591 53.04460034
Selection of Ref. Point for Repair 0.940267067 0.468000271 0.105916329
Selection of Repair for Srch Pop 0.950143213 0.630041053 0.142588882
Search Pop Replacement Ratio 0.353201227 0.253317903 0.0573301
Reference Pop Initialization Method 0.998187587 0.400442525 0.090626876
Search Pop Initialization Method 1.21491524 0.344601163 0.077989037
Freq Control Parameter 0.873429187 0.491907587 0.111326957
Operator 1 52.14959524 24.8780837 5.630328584
Operator 2 62.89592893 21.33113909 4.82759539
Operator 3 46.88721444 21.59209139 4.88665328
Operator 4 53.6321004 28.10806994 6.361328772
Operator 5 51.87596003 24.87783189 5.630271594
Operator 6 47.2019662 27.09726997 6.132567744
Operator 7 57.15969339 26.71686296 6.046475243
Operator 8 43.38214701 30.07582482 6.806664782
Operator 9 55.10507256 28.70109993 6.495541428
Operator 10 40.72883895 21.76934745 4.926769307

Table H.3 Meta-EA results for the parameters of the allocation EA for a 64 processors
16 processes system
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Parameter 64x16 Max Min Median

Reference Population Size 777.286926 65.477386 330.658173
Search Population Size 967.083618 97.735191 441.995972
Number of Evaluations 3000 20 2316.046631
Reference Population Evolution Period 1916.818237 1 908.696594
Number of Offspring for Ref. Pop. 881.245239 20 127.257942
Selection of Ref. Point for Repair 1.88511 0.209489 0.986488
Selection of Repair for Srch Pop 1.983171 0.176697 0.908557
Search Pop Replacement Ratio 0.936162 0.001874 0.434751
Reference Pop Initialization Method 1.561017 0.190346 1.039173
Search Pop Initialization Method 1.753513 0.709395 1.241179
Freq Control Parameter 1.918222 0.141345 0.687379
Operator 1 98.681847 3.422832 49.389069
Operator 2 99.491371 7.600605 67.02951
Operator 3 90.26947 11.349612 46.225033
Operator 4 97.59063 1.096463 61.832386
Operator 5 95.755798 5.909908 46.361481
Operator 6 96.332153 10.424253 43.954857
Operator 7 89.719986 8.030785 69.656998
Operator 8 84.376366 0 39.829182
Operator 9 100 0.250459 63.127525
Operator 10 94.425659 5.698383 39.847404

Table H.4 Meta-EA results for the parameters of the allocation EA for a 64 processors
16 processes system
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Parameter 128x 16 Mean Std Dev CI

Reference Population Size 423.6037612 257.6806745 61.24559248
Search Population Size 492.7267231 224.2839 53.30784066
Number of Evaluations 1431.524429 1097.843723 260.9357081
Reference Population Evolution Period 1111.504688 583.3293345 138.6458288
Number of Offspring for Ref. Pop. 324.0205785 267.2823349 63.52771696
Selection of Ref. Point for Repair 1.236747882 0.445590788 0.105908105
Selection of Repair for Srch Pop 1.023674765 0.681043376 0.161870521
Search Pop Replacement Ratio 0.465002706 0.20717318 0.049240961
Reference Pop Initialization Method 0.964030941 0.503030269 0.119560332
Search Pop Initialization Method 1.171138647 0.552814168 0.131392978
Freq Control Parameter 0.800512235 0.574952432 0.136654805
Operator 1 39.35214124 27.48900254 6.533591432
Operator 2 48.79633788 27.11804108 6.44542124
Operator 3 49.15392776 26.83640897 6.378482865
Operator 4 46.73856941 20.70864032 4.92203363
Operator 5 65.81685253 24.42039257 5.80424362
Operator 6 51.29089465 29.4781333 7.006368415
Operator 7 49.53845429 33.73221852 8.017480211
Operator 8 46.83234765 28.65741858 6.811300782
Operator 9 39.28663876 25.345122 6.02403349
Operator 10 49.38958835 23.09131644 5.48834855

Table H.5 Meta-EA results for the parameters of the allocation EA for a 128 processors
16 processes system
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Parameter 128x 16 Max Min Median

Reference Population Size 942.595093 77.409317 394.523346
Search Population Size 934.710815 166.93187 519.623108
Number of Evaluations 2949.694336 20 1169.803711
Reference Population Evolution Period 1962.057495 82.592873 968.590088
Number of Offspring for Ref. Pop. 896.248291 35.958309 311.04187
Selection of Ref. Point for Repair 1.998072 0.274207 1.363202
Selection of Repair for Srch Pop 1.934494 0.140079 0.983914
Search Pop Replacement Ratio 0.934103 0.034707 0.461233
Reference Pop Initialization Method 1.869744 0.009834 1.031923
Search Pop Initialization Method 1.9999 0.151053 1.226625
Freq Control Parameter 1.948553 0.11716 0.528522
Operator 1 99.647484 2.711082 43.836124
Operator 2 85.093475 0.058281 57.411022
Operator 3 92.320351 3.029196 51.436466
Operator 4 91.988464 12.616414 45.326813
Operator 5 96.612427 31.501341 72.411148
Operator 6 90.591217 11.45837 61.088367
Operator 7 93.173897 0.530666 54.38747
Operator 8 91.22831 0.479454 35.902012
Operator 9 91.879158 10.890305 27.330774
Operator 10 96.033081 16.426439 47.193642

Table H.6 Meta-EA results for the parameters of the allocation EA for a 128 processors
16 processes system

Parameters Generic Average Meta Effective 16/4 Effective 128/16

Mean 0.102851416 0.079493837 0.079637655 0.07803398
Variance 0.000166513 1.96237E-05 1.25521E-05 7.86807E-06
Std Dev 0.012903976 0.004429866 0.00354289 0.002805008
Max 0.128426373 0.084612913 0.084370658 0.082269631
Min 0.0854837 0.073658518 0.073658518 0.073658518
Median 0.1003794 0.079473332 0.078568257 0.076832488

Table H.7 Allocation EA results on 16 processors 4 processes empty initialization prob-
lem using different parameters.
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Parameters Generic Average Meta Effective 64/16 Effective 128/16

Mean 0.064279757 0.064663286 0.06406569 0.064189328
Var 7.86928E-08 2.91504E-08 6.49699E-08 3.85479E-08
Std Dev 0.000280522 0.000170735 0.000254892 0.000196336
Max 0.064723209 0.064926311 0.064492986 0.064574413
Min 0.063768357 0.064466201 0.063609332 0.063968621
Median 0.064305361 0.064658292 0.064082235 0.064114518

Table H.8 Allocation EA results on 64 processors 16 processes empty initialization prob-
lem using different parameters.

Parameters Generic Average Meta Effective 128/16 Effective 128/16

Mean 0.018313272 0.018740055 0.01845104 0.01845104
Var 2.89802E-08 2.09786E-08 1.29868E-08 1.29868E-08
Std Dev 0.000170236 0.00014484 0.00011396 0.00011396
Max 0.018536052 0.019036792 0.018615726 0.018615726
Min 0.018061044 0.018520806 0.018217083 0.018217083
Median 0.018321661 0.018709855 0.01844142 0.01844142

Table H.9 Allocation EA results on 128 processors 16 processes empty initialization
problem using different parameters.
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